Characterization of Hydroxyapatite derived from Bovine Bone
Keywords:
Hydroxyapatite, Cowbone, heat treatment, particle size and temperature.Abstract
In the present study, hydroxyapatite (HAp) was synthesized from biosourcesbovine bone in a cost effective and ecofriendly way.Bovine bone were converted to hydroxyapatite (HAP) by a heat treatment method at different temperatures. The final product were characterized by X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray spectroscopy (EDX) and FT-IR. The phase, purity and crystallinity of different calcinedHAp powder were analysed.It confirms that material prepare from biosources cow bone is hydroxyapatite indeed. The natural HAp obtained by calcining at 850 °C shows the desired quality. In addition, SEM results revealed the formation of microstructuredHAp 0.4 mm at 700 °C and crystal agglomeration was observed with an increase in calcination temperature. Calcium and Phosphorus contents were 20 % and 11.4%, respectively, which corresponded to the Ca/P molar ratio of nonstoichiometric hydroxyapatite. The specific surfaces of products were measured by BET method. The volume of micropores was determined.
References
Orlovskii V.P., Komlev V.S., Barinov S.M., Hydroxyapatite And Hydroxyapatite-Based Ceramics, Inorganic Materials, 2002, (38) 10, 973–984.
Knychalska-Karwan Z., Slósarczyk A., Hydroksyapatyt W Stomatologii, Krakmedia, Kraków, 1994.
Vallet-Regi M., Gonzalez-Calbet J.M., Calcium Phosphates As Substitution Of Bone Tissues, Progress In Solid State Chemistry, 2004, 32, 1–31.
Fathi M.H., Hanifi A., Mortazavi V., Preparation And Bioactivity Evaluation Of Bone-Like Hydroxyapatite Nanopowder, Journal Of Materials Processing Technology, 2008, 202, 536–542.
Barakat N.A.M., Khil M.S., Omran A.M., Sheikh F.A., Kim H.Y., Extraction Of Pure Natural Hydroxyapatite From The Bovine Bones Biowaste By Three Different Methods, Journal Of Materials Processing Technology, 2009, 209(7), 3408–3415.
Ooi C.Y., Hamdi M., Ramesh S., Properties Of Hydroxyapatite Produced By Annealing Of Bovine Bone, Ceramics International, 2007, 33, 1171–1177.
Tang, P.; Li, G.; Wang, J.; Zheng, Q.; Wang, Y. Development, characterization, and validation of porous carbonated hydroxyapatite bone cement. J. Biomed. Mater. Res. B 2009, 90, 886-893.
Staffa, G.; Nataloni, A.; Compagnone, C.; Servadei, F. Custom made cranioplasty prostheses in porous hydroxyapatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir. 2007, 149, 161-170.
Nair, M.; Suresh Babu, S.; Varma, H.; John, A. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater. 2008, 4, 173-181.
Hirata, A.; Maruyama, Y.; Onishi, K.; Hayashi, A.; Saze, M.; Okada, E. A Vascularized artificial bone graft using the periosteal fflap and porous hydroxyapatite; basic research and preliminary clinical application. Wound Repair Regen. 2008, 12, A4.
Venkatesan, J.; Qian, Z.J.; Ryu, B.; Ashok Kumar, N.; Kim, S.K. Preparation and characterization of carbon nanotube-grafted-chitosan—Natural hydroxyapatite composite for bone tissue engineering. Carbohyd. Polym. 2010, doi:10.1016/j.carbpol.2010.08.019.
Salman, S.; Soundararajan, S.; Safina, G.; Satoh, I.; Danielsson, B. Hydroxyapatite as a novel reversible in situ adsorption matrix for enzyme thermistor-based FIA. Talanta 2008, 77, 490-493.
Reichert, J.; Binner, J. An evaluation of hydroxyapatite-based filters for removal of heavy Metalions from aqueous solutions. J. Mater. Sci. 1996, 31, 1231-1241.
Venkatesan, J.; Kim, S.-K. Chitosan composites for bone tissue engineering- an overview. Mar.Drugs 2010, 8, 2252-2266.
Tseng, Y.; Kuo, C.; Li, Y.; Huang, C. Polymer-assisted synthesis of hydroxyapatite nanoparticle. Mater. Sci. Eng. C 2009, 29, 819-822.
Ooi, C. Y.; Hamdi, M.; Ramesh, S. Properties of hydroxyapatite produced by annealing of bovine bone. Ceram. Int. 2007, 33, 1171-1177.
Dachun, L.; Wei, C. Preparation and characterization of natural hydroxyapatite from animal hard tissues. Key Eng. Mat. 2007, 342, 343.
Ivankovic, H.; Gallego Ferrer, G.; Tkalcec, E.; Orlic, S.; Ivankovic, M. Preparation of highly porous hydroxyapatite from cuttlefish bone. J. Mater. Sci.-Mater. Med. 2009, 20, 1039-1046.
Kim, S.; Park, P.; Kim, Y. Study on acute subcutaneous toxicity of hydroxyapatite sinter produced from tuna bone in Sprague—Dawly rats. Korean J. Life Sci. 2001, 11, 97–102.
Walters, M.; Leung, Y.; Blumenthal, N.; LeGeros, R.; Konsker, K. A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J. In org. Biochem. 1990, 39, 193.
Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: A review study
on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600-612.
Han, Y.; Li, S.; Wang, X.; Jia, L.; He, J. Preparation of hydroxyapatite rod-like crystals by protein precursor method. Mater. Res. Bull. 2007, 42, 1169-1177
Downloads
Published
How to Cite
Issue
Section
License
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.