Enhanced Microwave Absorption Properties of Y Doped BiFeO<sub>3 </sub>


  • Bambang Soegijono University of Indonesia
  • Suharno, Rahmatul Hidayat
  • Dwita Suastiyanti


Multiferroic, BiFeO3, Microwave absorption, Doped


Polycrystalline Bi1-xYxFeO3 with x = 0, 0.06, and 0.12 wt%   have been  synthesized  by sol–gel autocombustion method. The gel have been heated at 150°C for 3 h, dried, grounded and followed by calcination at 750°C  for 5 h. The X-ray diffraction (XRD) patterns of samples are indexed and well matched with rhombohedral structure (R3c). The samples of Bi1-xYx.FeO3, (x = 0, 0.06, 0.12) show impuruties of  Bi25Fe2O39 in small amount. The decrease intensity in the splitting of (104) and (110) peaks around 2θ = 32° indicates the reduction of the rhombohedral phase transform to orthorhombic phase. The scanning electron microscopy (SEM) shows doping Yttrium reduce particle size. The M-H curve measured with SQUID results saturation magnetization at 60 K of pure (3.36 emu/g) and Y doped (19.54 emu/g), the saturation magnetization at 300 K of  pure (3.11 emu/g) and Y doped (14.73 emu/g). Reflection Loss (RL) of of Bi1-xYxFeO3/Silicon Rubber composite increase with optimum value of -37.23 dB at 10.85 GHz.


Y. Naito, K. Suetake, Application of Ferrite to Electromagnetic Wave Absorber and its Characteristics , IEEE Trans. Microwave Theory Tech. 19 (1971) pp.65.

I.M. De Rosa, A. Dinescu, F. Sarasini, M.S. Sarto, Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers, Composites Science and Technology 70 (2010), pp.102–109.

V.M. Petrov, V.V. Gagulin, Microwave absorbing materials, Inorganic Materials 37 (2001) pp.93–98.

] L.J. Deng, M.G. Han, Microwave absorbing performances of multiwalled carbon nanotube, Applied Physics Letters 91 (2007).

J.B. Kim, S.K. Lee, C.G. Kim, Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band, Composites Science and Technology 68 (2008) pp.2909–2916.

L.Wang,J.B.Xu,B.Gao,A.M.Chang,J.Chen,L.Bian,C.Y.Song, Synthesis of BiFeO3 nanoparticles by a low-heating temperature solid state precursor method, Materials Research Bulletin 48(2013) pp.383–388.

K.F.Wang, J.M.Liu, Z.F.Ren, Multiferroicity:the coupling between magnetic and polarization orders, Advances in Physics 58 (2009) pp.321–448.

Y.Tokunaga,N.Furukawa,H.Sakai,Y.Taguchi,T.H.Arima, Y. Tokura,Composite domain walls in a multiferroic perovskite ferrite, NatureMaterials8(2009) pp.558–562.

J.X.Zhang, Q.He,M.Trassin, W.Luo,D.Yi, M.D.Rossell, P.Yu, L. You, C.H.Wang, C.Y.Kuo, J.T.Heron, Z.Hu, R.J.Zeches, H.J. Lin, A.Tanaka, C.T.Chen, L.H.Tjeng, Y.H.Chu, R.Ramesh, Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3, Physical Review Letters 107(2011) 147602.

X.L.Yan, J.G.Chen, Y.F.Qi, J.R.Cheng, Z.Y.Meng, Hydrothermal synthesis and characterization of multiferroic Bi1-xLax FeO3 crystallites, Journal of theEuropean Ceramic Society 30(2010) pp. 265–269.

D.C.Arnold, K.S.Knight, F.D.Morrison, P.Lightfoot, Ferroelectric–paraelectric transition in BiFeO3: crystal structure of the orthorhombic b phase, Physical Review Letters 102 (2009) 27602.

C.Michel, J.M.Moreau, G.D.Achenbach, R.Gerson, W.James, The atomic structure of BiFeO3, Solid State Communications 7 (1969) pp.701–704.




How to Cite

Soegijono, B., Hidayat, S. R., & Suastiyanti, D. (2015). Enhanced Microwave Absorption Properties of Y Doped BiFeO<sub>3 </sub>. Asian Journal of Applied Sciences, 3(4). Retrieved from https://ajouronline.com/index.php/AJAS/article/view/2904




Most read articles by the same author(s)