Mathematical Model of Three Dimensional Spouted Bed Using Distinct Element Method
DOI:
https://doi.org/10.24203/ajas.v7i1.5726Keywords:
Spouted Bed / Distinct Element Method (DEM), Computational Fluid Dynamic (CFD), Heat TransferAbstract
Spouted bed was simulated by a combining of Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) technique. In the simulation, DEM based on the Newton’s second law of motion was used to solve the particle motion and the fluid motion were obtained by CFD with the SIMPLE method and Upwind scheme. Programming was developed in Standard-C language and MATLABTM was used to visualize the results. The size of particles focused on this simulation is 2.5 mm in diameter (the density = 2,500 kg/m3, stiffness = 800 Nm -1). The time step used to maintain the stability of the simulation was 6.5 10-5 sec.
In this simulation, three levels of the static bed height were studied: 45, 58, and 70 mm. The operating parameter effects (the static bed height on the pressure drop across the bed and the minimum spouting velocity) were investigated. The pressure drop across the bed and the minimum spouting velocity increased corresponding to the level increment. In the study of the pulsed and multi-pulsed frequency, it was found that the higher number of frequency introduced the higher heat transfer to the particles. Moreover, the effect of each type of flow on the average particles temperature was studied. The continuous flow gave the highest average particles temperature. Even though, the single pulsed flow and the multiple pulsed flows gave the lower heat transfer than continuous flow, the multiple flows produced a very good distribution in the heat transfer and also can reduce the dead zone problem of the spouted bed.
References
Cundall, P.A. and O.D.L Strack.,1979, A Discrete Numerical Model for Grannular Assemblies, Geotechnique 29(1):47-65
Mathur, K.B. and Epstein, N.,1974, Spouted Beds, Academic Press, New York, pp. 1-122.
Ergun, S., 1952, Chemical Engineering Progress, Vol. 48, No.2, pp.123-232
Wen, C.Y. and Yu, Y.H., 1996, Chemical Engineering Progress, Series 62, Vol. 62, pp.143-156.
Suntharasmai, S., 2002, Simulation of Momentum and Heat Transfer in a Vibrated Fluidized Bed, Master of Engineering Thesis, Chemical Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, pp. 1-70
Downloads
Published
How to Cite
Issue
Section
License
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.