Effect of a Pseudomonas fluorescens-based Biofertilizer on Sweet Potato Yield Components
DOI:
https://doi.org/10.24203/ajas.v9i2.6607Keywords:
biofertilizer, plant nutrition, sustainable agriculture, sweet potato cropAbstract
A field experiment was conducted to study the effect of a Pseudomonas fluorescens-based biofertilizer on sweet potato (Ipomoea batatas (L) Lam) yield. The application was by immersion of cuttings before sowing for 0, 5, 10 and 15 minutes with combination doses of 0, 50 and 100% of NPK mineral fertilizer in a randomized block design with three replications (12 treatments-combinations). During the harvest (130 days after planting), some measurements related to yield components were recorded on ten randomly selected plants from each plot. All treatments with Pseudomonas’ immersion showed a positive productive response. With 100% NPK and the immersion in the biofertilizer for 15 min showed the highest yield (56.09 tha-1), followed by the other treatments with 100% NPK and without statistical differences among them. The treatment with 50% NPK and the immersion in Pseudomonas for 15 min (49.58 tha-1) had no statistical differences with the control variant (100% NPK, 51.60 tha-1). Based on the results, it can be concluded that this biofertilizer could be an appropriate alternative to increase the sweet potato yield, saving the 50% of the current quantity of the recommended mineral fertilizer, through a more friendly environmental techniques to promote a sustainable, efficient and productive agriculture.
References
Suprasanna P. 2020. Plant abiotic stress tolerance: Insights into resilience build-up. J. Biosci. 45: 120.
Lebot V. 2019. Sweet potato: agronomy; in Tropical root and tuber crops: cassava, sweet potato, yams and aroids (eds) J Atherton and A Rees (Oxford: CABI, 2nd Edition Chapter 12) pp. 139–150.
FAOSTAT 2019. Production, Crops, Sweet potato, 2017 data. FAOSTAT | © FAO (Food and Agriculture Organization) Statistics area 2019. Retrieved from: http://faostat.fao.org/site/567/default.aspx#ancor, [Accessed: 24/11/2019].
Uwah D.F., Undie U.L., John N.M. and Ukoha G.O. 2013. Growth and yield response of improved sweet potato (Ipomoea batatas (L) Lam) varieties to different rates of potassium fertilizer in Calabar, Nigeria. J. Agric. Sci. 5: 61–69.
Ruiz L., Simó J., Rodríguez S. and Rivera R. 2012. Las micorrizas en cultivos tropicales. Una contribución a la sostenibilidad agroalimentaria (Ed Académica Española, España) 239 p.
Kareem I. and Akinrinde E.A. 2018. Impact of phosphorus release dynamics on sweet potato production. Sci. Agri. 21(1) 26-34.
Ruiz L.A., Carvajal D., Espinosa E., Simó J., Rivera R. and Espinosa A. 2015. Efecto de las micorrizas y bioplaguicidas sobre cultivares de raíces y tubérculos en un suelo pardo mullido carbonatado. Rev. Agric. Trop. 1(1) 1-6.
Pérez J. and Sánchez D. 2017. Caracterización y efecto de Azotobacter, Azospirillum y Pseudomonas asociadas a Ipomoea batatas del Caribe Colombiano. Rev. Colomb. Biotecnol. 19(2) 35-46.
Fundora L.R., Cabrera J.A., González J. and Ruiz L.A. 2009. Incrementos en los rendimientos del cultivo de boniato por la utilización combinada del fitoestimulante Fitomas-E y el biofertilizante ECOMIC® en condiciones de producción. Cult. Trop 30(3):14-17.
Peña K., Rodríguez J.C., Olivera D., Meléndrez J.F., Rodríguez L., García R. and Rodríguez L. 2017. Effect of growth promoter on different vegetable crops. Int. J. Dev. Res. 7(2): 11737-11743.
Adeyeye A.S., Akanbi W.B., Sobola O.O., Lamidi W.A. and Olalekan K.K. 2016. Comparative effect of organic and in-organic fertilizer treatment on the growth and tuber yield of sweet potato (Ipomoea batatas L). Int. J. Sustain. Agric. Res. 3(3): 54-57.
Singh J., Sharma M.K., Singh S.P., Bano R. and Mahawar A.K 2018. Effect of organic and inorganic sources of NPK and bio-fertilizer on enhancement of growth attributes and chlorophyll content of sweet potato. Int. J. Curr. Microbiol. App. Sci. 7(9): 3659-3667.
Imperiali N., Chiriboga X., Schlaeppi K., Fesselet M., Villacrés D., Jaffuel G., Bender S.F., Dennert F., Blanco R., van der Heijden M.G.A., Maurhofer M., Mascher F., Turlings T.C.J., Keel C.J. and Campos R. 2017. Combined field inoculations of Pseudomonas bacteria, arbuscular mycorrhizal fungi, and entomopathogenic nematodes and their effects on wheat performance. Front. Plant Sci. 8: 1809.
Nieto P. 2016. Pseudomonas, microorganismos de biocontrol en agricultura. Control Bío, Retrieved from: https://controlbio.es/es/blog/c/92_pseudomonas-microorganismos-de-biocontrol-en-agricultura.html, (Accessed: 6/11/2018)
Madigan M. and Martinko J. 2019. Brock Biology of Microorganisms. Pearson (ed) 15th edition, Pearson Educational Limited (Pearson Global Edition. Harlow, UK) 1056 p.
Pérez M.C., Oramas J., Sotolongo E.A., Miranda A., Román Y. and González A. 2019. Optimización del medio de cultivo y las condiciones de fermentación para la producción de un biofertilizante a base de Pseudomonas fluorescens. Biot. Veg. 19(2): 127–138.
Hernández J.A., Pérez J.J.M., Bosch I.D. and Castro S.N. 2015. Clasificación de los suelos de Cuba (Ed. INCA, Cuba) 93 p.
INIVIT. 2012. Instructivo técnico para la producción de semillas de viandas. Martínez E (ed.) Instituto de Investigaciones de Viandas Tropicales (INIVIT) (Ministerio de la Agricultura, Cuba) 162 p.
CIP, AVRDC, IBPGR. 1991. Descriptores de la batata. Huamán, Z. (ed.) International Board for Plant Genetic Resources (IBPGR), Rome, Italy. 132 p
Morales, A. 2018. Caracterización morfo-agronómica de la colección de batata (Ipomoea batatas (L.) Lam.) de CORPOICA, Colombia. Tesis en opción al Grado de Master en Agricultura Sostenible, Facultad de Ciencias agropecuarias, Universidad Central Marta Abreu de Las Villas, 98 p.
SPSS. 2012. SPSS STATISTICAL, Version 15.0. for Windows. [Online] Retrieved from: www.ibm.com, (Accessed: 18/09/2020)
Dumbuya G., Sarkodie-Addo J., Daramy M.A. and Jalloh M. 2017. Effect of vine cutting length and potassium fertilizer rates on sweet potato growth and yield components. Int. J. Agric. For. 7(4) 88-94
Ezziyyani M., Requena M., Pérez-Sánchez C. and Candela M. 2005. Efecto del sustrato y la temperatura en el control biológico de Phytophthora capsici en pimiento (Capsicum annuum L.) An. Biol. 27: 119-126.
Jorquera M.A., Shaharoona B., Nadeem S.M., Mora M.L. and Crowley D.E. 2012. Plant growth-promoting rhizobacteria associated with ancient clones of Creosote Bush (Larrea tridentata). Microb. Ecol. 4: 1008-1017.
Sarma R.K. and Sarkia R. 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa Ggrj21. Plant soil. 1-2: 111-126.
Rahmoune B., Morsli A., Khelifi-Slaoui M., Strueh A., Erban A., Kopka J., Prell J. and van Dongen J.T. 2017. Isolation and characterization of three new PGPR and their effects on the growth of Arabidopsis and Datura. Plants J. Plant Inter. 1: 1-6.
Ranjbar-Moghaddam F. and Aminpanah, H. 2015. Green bean (Phaseolus vulgaris L.) growth and yield as affected by chemical phosphorus fertilizer and phosphate bio-fertilizer. Idesia 33(2): 77-85.
Azafal I., Khan Z., Sikandar S. and Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 221: 36-49.
Perotti E.B.R., Menéndez L.T., Gaia O.E. and Pidello A. 2005. Pseudomonas fluorescens survival in soils with different contents of organic matter. Rev. Argent. Microbiol. 37(2): 102-105.
Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda M.C. and Glick B.R. 2016. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183: 92-99.
Oliveira A.P., Santos J.F., Cavalcante L.F., Pereira W.E., Santos M.C.C.A., Oliveira A.N.P. and Silva N.V. 2010. Yield of sweet potato fertilized with cattle manure and biofertilizer. Hortic. Bras. 28: 277-281.
Wang Y.., Zhang X., Wang L., Wang C., Fan W., Wang M. and Wang J. 2019. Effective biodegradation of pentachloronitrobenzene by a novel strain Peudomonas putida QTH3 isolated from contaminated soil. Ecotox. Environ. Safe. 30(182): 109463.
Alfonso E.T., Ruiz J. and Tejeda T. 2010. Efecto de un bioproducto a base de Pseudomona aeruginosa en el cultivo del tomate (Solanum licopersicum Mill). Rev. Colomb. Biotecnol. XII(1): 32-38.
Abdel-Razzak H.S., Moussa A.G., Abd-El-Fattah M.A. and El-Morabet G.A. 2013. Response of sweet potato to integrated effect of chemical and natural phosphorus fertilizer and their levels in combination with mycorrhizal inoculation. J. Biol. Sci. 13: 112–122.
Alane F., Moussab Karima B., Chabaca R. and Abdelguerfi A. 2019. Characterization of two oasis luzerns (El Menea, Tamentit) at the floral bud and early flowering stages. Environ. Anal. Eco. Stud. 6(3): EAES.000638.2019.
Halpern M., Bar-Tal A., Ofek M., Minz D., Muller T. and Yermiyahu U. 2015. The use of biostimulants for enhancing nutrient uptake. In: DL Sparks (Ed) Adv Agron (San Diego, CA: Elsevier) pp 141–174.
Van Oosten M.J., Pepe O., De Pascale S., Silletti S. and Maggio A. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4: 5.
Yakhin O.I., Lubyanov A.A., Yakhin I.A. and Brown P.H. 2017. Biostimulants in plant science: a global perspective. Front. Plant Sci. 7: 671.
Tadele Z. 2019. Orphan crops: their importance and the urgency of improvement. Planta, 250: 677–694.
Castillo C., Huenchuleo M., Michaud A. and Solano J. 2016. Micorrización en un cultivo de papa adicionado del biofertilizante Twin-N establecido en un Andisol de la Región de La Araucanía. Idesia (Arica). 34(1): 39-45.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Alexander Santana-Fernández, Yoel Beovides-García, Jaime E. Simó-González, María C. Pérez-Peñaranda, Jorge López-Torres, Aymé Rayas-Cabrera, Arletys Santos-Pino, Milagros Basail-Pérez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.