The The Effect of Alginate, Chitosan, and Nano Chitin as Encapsulation Materials of <em>L. casei</em> Probiotic Bacteria



  • Djaenudin Research Unit For Clean Technology, Indonesian Institute of Sciences, Indonesia
  • Endang Saepudin Department of Chemistry, University of Indonesia, Indonesia
  • Muhamad Nasir Research Unit for Clean Technology, Indonesian Institute of Sciences, Indonesia



Encapsulation, L.casei, alginate, nano chitin, chitosan


Alginate, nano chitin, and chitosan polymers can be used to protect the Lactobacillus casei  from gastric conditions. The goal of this study was to determine the effect of alginate, nano chitin, and chitosan as encapsulation materials of  L. casei  on their survivability in simulated gastric fluid (SGF). The encapsulation  process in this study was carried out by the extrusion  method. The resulted beads were soaked  in SGF (pH of 1.2 and 3) for 1 and 60  min at 37°C. In SGF pH 1.2 for 60 min, the survivability of L.casei in all variations of the experiment was 0% except those encapsulated from alginate (1%), nano chitin (0.2%), and chitosan (0.2) % of 75.35%. In SGF pH 3 for 60 min, the survivability of L.casei was 0% for beads unencapsulation and encapsulation made from alginate, while the highest survivability of L.casei was 81.22% obtained in various encapsulation experiments using alginate (1%), nano chitin (0.2%), and chitosan (0.2%). The addition of nano chitin or chitosan to L.casei encapsulation material can increase the survivability of L.casei, also showed that the combination of alginate, nano chitin, and chitosan  in the encapsulated material significantly increased the survivability of L.casei at SGF pH 1.2 and 3.

Author Biography

Djaenudin , Research Unit For Clean Technology, Indonesian Institute of Sciences, Indonesia

Research Unit For Clean Technology


J. Li and S. Nie, 2019, The functional and nutritional aspects of hydrocolloids in foods, Food Hydrocoll., 53 (2016), 46–61, doi: 10.1016/j.foodhyd.2015.01.035.

L. Agüeroa, D. Zaldivar-Silva, L. Pe˜na, and M. L. Dias, 2017, Alginate microparticles as oral colon drug delivery device : A review, Carbohydr. Polym., 168, 32–43, doi: 10.1016/j.carbpol.2017.03.033.

N. H. Khan, D. R. Korber, N. H. Low, and M. T. Nickerson, 2013, Development of extrusion-based legume protein isolate-alginate capsules for the protection and delivery of the acid sensitive probiotic, Bifidobacterium adolescentis, Food Res. Int., 54 (1), 730–737, doi: 10.1016/j.foodres.2013.08.017.

H. Gandomi, S. Abbaszadeh, A. Misaghi, S. Bokaie, and N. Noori, 2016, Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions, LWT - Food Sci. Technol., doi: 10.1016/j.lwt.2016.01.064.

P. Allan-Wojtas, L. T. Hansen, and A. T. Paulson, 2008, Microstructural studies of probiotic bacteria-loaded alginate microcapsules using standard electron microscopy techniques and anhydrous fixation $, LWT, 41, 101–108, doi: 10.1016/j.lwt.2007.02.003.

J. Burgain, C. Gaiani, M. Linder, and J. Scher, 2011, Encapsulation of probiotic living cells: From laboratory scale to industrial applications, J. Food Eng., 104 (4), 467–483, 2011, doi: 10.1016/j.jfoodeng.2010.12.031.

F. Liaqat and R. Eltem, 2018, Chitooligosaccharides and their biological activities: A comprehensive review, Carbohydr. Polym., 184 (June 2017), 243–259, doi: 10.1016/j.carbpol.2017.12.067.

A. R. Logesh, K. A. Thillaimaharani, K. Sharmila, M. Kalaiselvam, and S. M. Raffi, 2012, Production of chitosan from endolichenic fungi isolated from mangrove environment and its antagonistic activity, Asian Pac. J. Trop. Biomed., 2(2), 140–143, doi: 10.1016/S2221-1691(11)60208-6.

J. G. Fernandez and D. E. Ingber, 2014, Manufacturing of Large-Scale Functional Objects Using Biodegradable Chitosan Bioplastic a, 1–7, doi: 10.1002/mame.201300426.

B. B. Aam, E. B. Heggset, A. L. Norberg, M. Sø, K. M. Vå, and V. G. H. Eijsink, 2010, Production of chitooligosaccharides and their potential applications in medicine, Mar. Drugs, 8, 1482–1517, doi: 10.3390/md8051482.

A. Tolaimate, J. Desbrieres, M. Rhazi, and A. Alagui, 2003, Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties, Polymer (Guildf)., 44, 7939–7952, doi: 10.1016/j.polymer.2003.10.025.

R. M. Lucinda-silva, H. Regina, N. Salgado, and R. Cesar, 2010, Alginate – chitosan systems : In vitro controlled release of triamcinolone and in vivo gastrointestinal transit, Carbohydr. Polym., 81, 260–268, doi: 10.1016/j.carbpol.2010.02.016.

X. Y. Li, X. G. Chen, Z. W. Sun, H. J. Park, and D.-S. Cha, 2011, Preparation of alginate chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393, Carbohydr. Polym., 83 (4), 1479–1485, doi: 10.1016/j.carbpol.2010.09.053.

M. Ali, K. Zanjani, and B. Ghiassi, 2014, Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition, Iran. J. Pharm. Res., 13 (3), 843–852.

L. A. Nnamonu, R. Sha’Ato, and I. Onyido, 2012, Alginate Reinforced Chitosan and Starch Beads in Slow Release Formulation of Imazaquin Herbicide—Preparation and Characterization, Mater. Sci. Appl., 03 (08), 566–574, doi: 10.4236/msa.2012.38081.

G. M. Raghavendra, J. Jung, D. Kim, and J. Seo, 2016, Microwave-assisted antibacterial chitosan-silver nanocomposite films, Int. J. Biol. Macromol., 84, 281–288, doi: 10.1016/j.ijbiomac.2015.12.026.

D. Kavitake, S. Kandasamy, and P. Bruntha, 2018, Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – A review, Food Biosci., 21 (June 2017),. 34–44, doi: 10.1016/j.fbio.2017.11.003.

E. Mardliyati, S. El Muttaqien, and D. R. Setyawati, 2012, Sintesis nanopartikel kitosan- trypoly phosphate dengan metode gelasi ionik : pengaruh konsentrasi dan rasio volume terhadap karakteristik partikel, Pros. Pertem. Ilm. Ilmu Pengetah. dan Teknol. Bahan, 90–93.

W. Krasaekoopt, B. Bhandari, and H. Deeth, 2003, Evaluation of encapsulation techniques of probiotics for yoghurt, Int. Dairy J., 13 (1), 3–13, doi: 10.1016/S0958-6946(02)00155-3.

O. Sandoval-Castilla, C. Lobato-Calleros, H. S. García-Galindo, J. Alvarez-Ramírez, and E. J. Vernon-Carter, 2010, Textural properties of alginate – pectin beads and survivability of entrapped L. casei in simulated gastrointestinal conditions and in yoghurt, Food Res. Int., 43 (1),. 111–117, doi: 10.1016/j.foodres.2009.09.010.

S. Woraharn, C. Chaiyasut, B. Sirithunyalug, and J. Sirithunyalug, 2010, Survival enhancement of probiotic Lactobacillus plantarum CMU-FP002 by granulation and encapsulation techniques, African J. Microbiol. Res., 4 (20), 2086–2093.

P. Kanmani, R. S. Kumar, N. Yuvaraj, K. A. Paari, V. Pattukumar, and V. Arul, 2011, Effect of cryopreservation and microencapsulation of lactic acid bacterium Enterococcus faecium MC13 for long-term storage, Biochem. Eng. J., 58–59, 140–147, doi: 10.1016/j.bej.2011.09.006.




How to Cite

Djaenudin, Saepudin, E. ., & Nasir, M. (2021). The The Effect of Alginate, Chitosan, and Nano Chitin as Encapsulation Materials of <em>L. casei</em> Probiotic Bacteria: . Asian Journal of Applied Sciences, 9(3).