Alignment of E. coli Bacteria in a PDMS Microfluidic Channel using Ultrasonic Standing Wave

Authors

  • A. K. M. Ariful Haque Siddique Chungnam National University, Daejeon
  • Afroja Tazin Islam Chungnam National University, Daejeon
  • Seung Hyun Cho Korea Research Institute of Standards and Science, Daejeon
  • CheolGi Kim Chungnam National University, Daejeon

Keywords:

ultrasonic standing wave, live cell manipulation, PDMS microfluidic channel, e.coli bacteria

Abstract

Ultrasonic radiation force caused by ultrasonic standing wave has the capability to align microparticles suspended in fluid medium in its nodal or antinodal planes depending on the mechanical properties of particles and fluid medium. In some of the recent works, alignment of live cells like Cyanobacteria etc. inside a biocompatible Polydimethylsiloxane (PDMS) microfluidic channel were successfully carried out by utilizing the ultrasonic radiation force. This study is an extended work of these types of ultrasonic live cell manipulation in PDMS microfluidic channel. In this work, we demonstrate the alignment of E.coli bacteria, which is widely used in biotechnological research area, using ultrasonic radiation force in a PDMS microfluidic channel. With this successful alignment of E.coli bacteria it is proved that ultrasonic standing wave has the vast range of manipulation capability of different types of live cells.

Author Biographies

A. K. M. Ariful Haque Siddique, Chungnam National University, Daejeon

Department of Materials Science & Engineering

Afroja Tazin Islam, Chungnam National University, Daejeon

Department of Materials Science & Engineering

Seung Hyun Cho, Korea Research Institute of Standards and Science, Daejeon

Center for Safety Measurement

CheolGi Kim, Chungnam National University, Daejeon

Department of Materials Science & Engineering

References

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,†vol. 24, no. 4, pp. 156-159, 1970.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particlesâ€, Optics Letters, vol. 11, no. 5, pp. 288-290, 1986.

J. E. Molloy, M. J. Padgett, “Lights, action: Optical tweezersâ€, Contemporary Physics, vol. 43, no. 4, pp. 241-258, 2002.

K. Dholakia, P. Reece, M. Gu, “Optical micromanipulationâ€, Chem. Soc. Rev., vol. 37, no.1, pp. 42-55, 2008.

J. Jung, K. -H. Han, “Lateral-driven continuous magnetophoretic separation of blood cellsâ€Appl. Phys. Lett. 93, 223902, 2008.

K. -H. Han, A. B. Frazier, “Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separationsâ€, Lab Chip, vol. 6, pp. 265–273, 2006.

M. D. Vahey and J. Voldman, “An Equilibrium Method for Continuous-Flow Cell Sorting Using Dielectrophoresisâ€, Anal. Chem., vol. 80, no. 9, pp. 3135–3143, 2008.

N. Gadish, J. Voldman, “High throughput positive dielectrophoretic bioparticle microconcentratorâ€, Anal. Chem, vol. 78, no. 22, pp.7870-7876, 2006.

T. Kozuka, T. Tuziuti, H. Mitome, T. Fukuda, “One dimensional transportation of particles using an ultrasonic standing waveâ€, 6th int. symp. Micro Machine and Human Science Proc., pp.179-185, 1995.

D. A. Johnson, and D. L. Feke, “Methodology for fractionating suspended particles using ultrasonic standing wave and divided flow fieldsâ€, Separations Technology, vol. 5, no. 4, pp. 251-258, 1995.

J. J. Hawkes, W. T. Coakley, “A continuous flow ultrasonic cell-filtering methodâ€, Enzyme and Microbial Technology, vol. 19, no. 1, pp. 57-62, 1996.

J. J. Hawkes, W. T. Coakley, “Force field particle filter, combining ultrasound standing waves and laminar flowâ€, Sensors and Actuators B: Chemical, vol. 75, no. 3, pp. 213-222, 2001.

A. Nilsson, F. Petersson, H. Jönsson, T. Laurell, “Acoustic control of suspended particles in microfluidic chipsâ€, Lab Chip, vol. 4, no. 2, pp. 131-135, 2004.

F. Petersson, L. Aberg, A. M. Sward-Nilsson, T. Laurell, “Free flow acoustophoresis:  Microfluidic-based mode of particle and cell separationâ€, Anal. Chem, vol. 79, no. 14, pp. 5117-5123, 2007.

M. Evander, A. Lenshof, T. Laurell, J. Nilsson, “Acoustophoresis in wet-etched glass chipsâ€, Anal. Chem, vol. 80, no. 13, pp. 5178-5185, 2008.

P. Augustsson, B. A. Lena, K. Ann-Margret, S. Nilsson. T. Laurell, “Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusingâ€, Microchim Acta. vol. 164, no. 3-4, pp. 269-277, 2009.

F. Petersson, A. Nilsson, C. Holm, H. Jonsson, T. Laurell, “Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channelsâ€, Analyst. vol. 129, no. 10, pp. 938-943, 2004.

T. J. Johnson, D. Ross, M. Gaitan, L.E. Locascio, “Laser Modification of Preformed Polymer Microchannels:  Application To Reduce Band Broadening around Turns Subject to Electrokinetic Flowâ€, Anal. Chem. vol. 73, no. 15, pp. 3656–3661, 2001.

T. Franke, S. Braunmuller, L. Schmid, A. Wixforth and D. A. Weitz, “Surface acoustic wave actuated cell sorting (SAWACS)â€, Lab Chip, vol. 10, no. 6. pp. 789–794, 2010.

A. T. Islam, A. H. Siddique, T. S. Ramulu, V. Reddy, Y. J. Eu, S. H. Cho, C. J. Kim, “Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS microfluidic channelâ€, Biomedical Microdevices, vol. 14, no. 6, pp. 1077-1084, 2012.

K. Yosioka, Y. Kawasima, “Acoustic radiation pressure on a compressible sphereâ€, Acustica, vol. 5, no. 3, pp. 167-173, 1955.

Andrea Thompson, "E. coli Thrives in Beach Sands", Live Science. (2007-06-04)

S. Ishii, M. J. Sadowsky, "Escherichia coli in the Environment: Implications for Water Quality and Human Health". Microbes and Environments, vol. 23, no. 2 pp. 101-108 , 2008.

Downloads

Published

2013-12-26

How to Cite

Siddique, A. K. M. A. H., Islam, A. T., Cho, S. H., & Kim, C. (2013). Alignment of E. coli Bacteria in a PDMS Microfluidic Channel using Ultrasonic Standing Wave. Asian Journal of Applied Sciences, 1(5). Retrieved from https://ajouronline.com/index.php/AJAS/article/view/600