Grid Ramification of Set-based Multiset Ordering

Authors

  • Chinedu Peter Federal University, Dutsin-ma, Nigeria
  • Dasharath Singh

Keywords:

set-based multiset ordering, grid, difference grid, reference

Abstract

The paper presents a grid form of the Jouannaud-Lescanne set-based multiset ordering, otherwise known as the grid-based set-based multiset ordering. A relatively more applicable de-nition of multiset ordering is presented. The grid approach has beenused in this paper to prove some assertions, the pair-wise equalitytheorem for multisets, in particular.

Author Biography

  • Chinedu Peter, Federal University, Dutsin-ma, Nigeria

    Mathematical Sciences & IT department.

    Assistant Lecturer

References

Dershowitz, N. and Manna, Z., Proving Termination with Multiset Ordering, Comm. ACM, Vol. 22., 1975, 465-476.

Huet, G. and Oppen, D. C., Equations and rewrite rules: a survey. In Formal Languages, Perspectives and Open Problems (R. Book, ed.), Academic Press, New York, 1980.

Jouannaud, J. and Lescanne, P., On multiset orderings, Information processing letters, Volume 15, Number 2, 1982, 57-63.

Singh, D., Ibrahim, A. M., Yohanna, T. and Singh, J. N. An overview of the applications of multiset. Novi Sad J. Math. Vol. 37, No. 2, 2007, 73-92.

Martin, U., A geometrical approach to Multiset orderings, Theoretical Computer Science, Vol. 67, 1989, 37-54.

Downloads

Published

2013-10-14

How to Cite

Grid Ramification of Set-based Multiset Ordering. (2013). Asian Journal of Fuzzy and Applied Mathematics, 1(3). https://ajouronline.com/index.php/AJFAM/article/view/321