Searching Web Documents Using a Fuzzy-Based Method

Authors

DOI:

https://doi.org/10.24203/ajfam.v5i2.4488

Keywords:

Web documents, Search algorithms, Type-2 fuzzy sets, Linguistic variables, User modeling

Abstract

Web searching could be more fruitful if a user could easily find documents which satisfy his/her needs in terms of structure, format and contents. Herein a solution through a fuzzy linguistic description of the document is proposed, a linguistic variant of standard metadata types. Linguistic expressions are used to qualitatively represent both meta-information and user needs and a matching system is developed to select the most compatible documents with the user profile. The documents retrieved by a web search engine are organized in clusters and ordered in each cluster.

Author Biographies

  • Enrico Fischetti, Dipartimento di Ingegneria Informatica (DIEM) University of Salerno Italy

    Dipartimento di Ingegneria Informatica (DIEM)

    Associate professor

  • Aniello Nappi, MANUCOR spa
    Researcher

References

Demartini G.: “From People to Entities: New Semantic Search Paradigms for the Webâ€, in Studies on the Semantic Web, IOS Press, pp. 1-162, 2014

Ding W., Liu Y., Zhang J.: “Chinese-keyword Fuzzy Search and Extraction over Encrypted Patent Documentsâ€, Proc. Knowledge Discovery and Information Retrieval, pp.168-176, 2015

IEEE 1484.12.1-2002, Draft Standard for Learning Object Metadata, http://www.ieee.org, 2002.

IMS Learning Resource Metadata Information Model, Version 1.2.1 Final Specification, http://www.imsglobal.org/metadata, 2001.

Khattak A.M., Mustafa J., Ahmed N., Latif K., Khan S.: “Intelligent Search in Digital Documentsâ€, Web Intelligence, pp.558-561, 2008

Klusch M., Kapahnke P., Schulte S., Lécué F., Bernstein A.: “Semantic Web Service Search: A Brief Surveyâ€, Kunstliche Intelligenz 30(2), pp.139-147, 2016

Patro S., Malhotra V.M., Johnson D.: “An Algorithm to Use Feedback on Viewed Documents to Improve Web Query - Enabling Naïve Searchers to Search the Web Smartlyâ€, Proc. Web Information Systems and Technologies (1), pp.287-294, 2006

Qumsiyeh R., Ng Y. “Searching web documents using a summarization approachâ€, Int.J. Web Information Systems 12(1), pp.83-101, 2016

Saraçoglu R., Tütüncü K., Allahverdi N.: “A new approach on search for similar documents with multiple categories using fuzzy clusteringâ€, Expert Syst. Appl. 34(4), pp.2545-2554, 2008

Sartori E., Velegrakis Y.,Guerra F.: “Entity-Based Keyword Search in Web Documentsâ€, Trans. Computational Collective Intelligence 21, pp.21-49, 2016

Su F.,Xiao C.,, Gao C.,Gao Y.: “Adaptive method to support effective searching over large-scale web documentsâ€, Proc. Fuzzy Systems and Knowledge Discovery, pp.2428-2432, 2010

Ullah I., Khusro S.: “In Search of a Semantic Book Search Engine on the Web: Are We There Yet ?â€, Proc. Computer Science On-line Conference (1), pp.347-357, 2016

Yao Z., Wang B.: “Using section-semantic relation structures to enhance the performance of Web searchâ€, in Proc. Database and Expert Systems Applications, London, pp. 512-516, 2000

Weiland L., Scherp A.: “A Novel Approach for Semantics-Enabled Search of Multimedia Documents on the Webâ€, in Multimedia Modeling, pp.450-61, 2014

World Wide Web Consortium (W3C), Semantic Web, http://www.w3c.org, 2001.

Zadeh L. A., “The Concept of a Linguistic Variable and its Application to Approximate Reasoning- I, II, IIIâ€, Information Sciences I 8 – II 8 – III 9, pp. 199-249; pp.301-357; pp. 43-80, 1970

Downloads

Published

22-04-2017

Issue

Section

Articles

How to Cite

Searching Web Documents Using a Fuzzy-Based Method. (2017). Asian Journal of Fuzzy and Applied Mathematics, 5(2). https://doi.org/10.24203/ajfam.v5i2.4488

Similar Articles

1-10 of 56

You may also start an advanced similarity search for this article.