Energy Transitions-Flip-Rate of Half Spin Particle by Magnetic Impurity in One Dimension

Hafeez Yusuf Hafeez, Jibrin Mohammed, Bala I. Adamu, Chifu E. Ndikilar

Abstract


In this article, we considered the dependence of the rate of energy transition on various parameters and how the energy-transition -rate changes as a function of radius R. We observed that with increasing radius R, the energy-flip-rate decreases, which is perfectly consistent with a system approaching ferromagnetic order. Also the energy-transition-rate for different choices of the amplitude of the impurities, for a purely static potential scatter, no energy transition occurs, but for magnetic impurities, we observed a high peak in the energy-transition-rate for one particular amplitude of order 5  . Different profiles of energy-transition-rate (ETR) against frequencies and amplitude are drawn respectively, for angle , θ , with µBB0=0.5 and     x = R2 = 100 and different values of frequencies and amplitude.


Keywords


Transitions rate, induced current, Eigenenergies, half spin particle, magnetic field and frequency

Full Text:

PDF

References


I. Zutic, J. Fabian, and S. D. Sarma. Rev. Mod. Phys. 76,323 (2004).

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger. Science 294, 1488 (2001).

Y. Tserkovnyak and A. Brataas. Phys. Rev. B 76, 155326 (2007).

J. Levy, Phys. Rev. Lett. 89, 147902 (2002).

D. Loss and D. P. DiVincenzo. Phys. Rev. A 57, 120 (1998).

E. Cota, R. Aguado, and G. Platero. Phys. Rev. Lett. 94, 107202 (2005).

E. N. Bulgakov and A. F. Sadreev. Phys. Rev. B 66, 075331 (2002).

I. A. Shelykh, N. G. Galkin, and N. T. Bagraev. Phys. Rev. B 72, 235316(2005).

E. Faizabadi and A. Najafi. Solid State Commun. 150, 1404 (2010).

K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and L. M. K. Vander sypen, Science 318, 1430 (2007).

P. Debray, Shafquat Rahman, Ju n jun Wan, R S Newrock, M. Cahay, Anh T. Ngo, Sergio Ulloa, Steven Herbert, Mustafa Muhammad, and M Johnson. Nat. Nanotechnol. 4(11):759-64 (2009).

A. A. Reynoso, G. Usaj, C. A. Balseiro, D. Feinberg, and M. Avignon. Phys. Rev. Lett. 101, 107001 (2008).

H. Hirayama, Y. Aoki, and C. Kato. Phys. Rev. Lett. 107, 027204 (2011).

Hyun Cheol Koo, Jae Hyun Kwon, Jonghwa Eom, Joonyeon Chang, Suk Hee Han,and Mark Johnson. Science, 325, 1515 (2009).

S. Muhlbauer, B. Binz, F. Jonietz,C. Pfleider, A. Rosch,A. Neubauer, R. Georgii, P. Boni. Science, 323, 915–919 (2009).

C. Pfleiderer and A. Rosch. Nature, 465(7300), 880–881 (2010).

A. Neubauer,C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Boni. Phys. Rev.Lett. 102, 186602 (2009).

K. Everschor. Ph.D. thesis, University of Cologne (2012).

M. Dey, S. K. Maiti, and S. N. Karmakar. Phys. Lett. A 374, 1522 (2010)

K. C. Seo, G. Ihm, and S. J. Lee, Physica E, 40, 2185 (2008).

M. Dey, S. K. Maiti, and S. N. Karmakar. Europhys. J. B, 80, 105 (2011).

S. K. Maiti. J. Comput. Theor. Nanosci. 8, 676 (2011).

M. Baedorf. Bachelor’s thesis, University of Cologne (2011).

S.M. Schroeter. Bachelor’s thesis, University of Cologne. (2012).

Hafeez Y. Hafeez, Chifu E. Ndikilar and Ibrahim M. Musa. Progress in Physics, 12, 15-19 (2016).

Chui-ZhiWang, Da-Yong Liu, Huai-Bao Tang, Jing Liu and Liang-Jian Zou. Physica B: Physics of Condensed Matter, 405(5), 1423-1427 (2010).

Hafeez Y. Hafeez, Chifu E. Ndikilar, Bala I. Adam and Ibrahim Saad. AIP Advances 6(5):055117, (2016).




DOI: https://doi.org/10.24203/ajas.v6i6.5499

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.