Reduction of Power Fluctuation in Wind Turbine Using Variable Frequency Transformer and Optimized PID Controller


  • Chellaswamy C Rajalakshmi Institute of Technology
  • Muthammal R Sri Ram Engineering College
  • Pragadeeshkumar N Rajalakshmi Institute of Technology
  • Ramesh R Saveetha Engineering College


permanent magnet synchronous generator, variable frequency transformer, particle swarm optimization, PID controller, wind turbine


This manuscript describes the possibility of permanent magnet synchronous generator (PMSG) based wind energy generation using variable frequency transformer (VFT)with an optimized particle swarm optimization based PID (PSO-PID) controller for reducing power fluctuations. VFT is a recent power transmission technique used to eliminate the power electronics needed in the conventional wind energy conversion system. To analyze the performance of the proposed method the MATLAB-Simulink model has been developed and tested under various loading condition. The efficiency of the proposed method has been verified by comparing the total harmonic distortion (THD) of the output voltage, current, and efficiency of the proposed method with the conventional method. The simulation results indicate that the proposed PSO-PID method does not produce harmonics and easy to implement. The cost analysis has been carried out and it shows that the proposed method is cheaper than the conventional method of generating wind power.

Author Biographies

Chellaswamy C, Rajalakshmi Institute of Technology

Associate Professor

Muthammal R, Sri Ram Engineering College

Professor, Department of Electronics and Communication Engineering

Pragadeeshkumar N, Rajalakshmi Institute of Technology

Department of Electronics and Communication Engineering

Ramesh R, Saveetha Engineering College

Professor, Department of Electronics and Communication Engineering


L.A. de S. Ribeiro, O.R. Saavedra, S.L. Lima, J.G. de Matos, G. Bonan, "Making isolated renewable energy systems more reliable", Renew. Energy, (Elsevier) vol. 45, pp. 221-231, 2012.

F.I. Bakhsh, M.M. Shees, M.S.J. Asghar, "Performance of wound rotor induction generators with the combination of input voltage and slip power control", Russ. Electr. Eng., vol. 85, no. 6, pp. 403-417, 2014.

Bhadra SN, Kastha D, Banerjee S, Wind electrical systems, Oxford Press, 2006.

Bhende CN, Mishra S, Malla SG, "Permanent magnet synchronous generator based standalone wind energy supply system", IEEE Trans Sust Energy, vol. 2, no. 4, pp. 361-73, 2011.

C. Mi, M. Filippa, J. Shen, N. Natarajan, "Modeling and control of a variable-speed constant-frequency synchronous generator with brushless exciter", IEEE Trans Ind Appl, vol. 40, no. 2, pp. 565-73, 2004.

AJG Westlake, JR Bumby, E. Spooner, "Damping the power-angle oscillations of a permanent-magnet synchronous generator with particular reference to wind turbine applications", IEE Proc Electr Power Appl, vol. 143, no. 3, pp. 269-80, 1996.

E.R. Pratico, C. Wegner, E.V. Larsen, R.J. Piwko, D.R. Wallace, D. Kidd, “VFT operational overview -The laredo project,†in Proc. of the IEEE Power Engineering Society General Meeting, USA, 2007.

A. Merkhouf, P. Doyon, S. Uphadayay, “Variable frequency transformer—Concept and electromagnetic design evaluationâ€, IEEE Trans. Energy Conversion, vol. 23, no. 4, pp. 989-996, 2008.

L. Wang and L. Y. Chen, “Reduction of power fluctuations of a large scale grid-connected offshore wind farm using a variable frequency transformerâ€, IEEE Trans. Sustain. Energy, vol. 2, no. 3, pp. 226-234, 2011.

A.S. Abdel-Khalik, A. Elserougi, S. Ahmed, A. Massoud, “Brushless doubly fed induction machine as a variable frequency transformerâ€, in Proc. 6th IET Int. Conf. Power Electron., Mach. Drives, pp. 1–6, 2012.

L. Contreras-Aguilar, N. Garcia, “Fast convergence to the steady state operating point of a VFT park using the limit cycle method and a reduced order modelâ€, In Proc. IEEE Power Eng. Soc. Gen. Meeting, Calgary, Canada, pp. 1–5, 2009.

E. T. Raslan, A. S. Abdel-Khalik, M. Abdulla, M. Z. Mustafa, “Performance of VFT when connecting two power grids operating under different frequenciesâ€, in Proc. 5th IET Int. Conf. Power Electron., Mach. Drives, pp. 1–6, 2010.

J.B. Ekanayake L. Holdsworth, N. Jenkins, “Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbinesâ€, Electric Power Systems Research 67, pp. 207-215, 2003.

Hee-Sang KO, Gi-Gab Yoon, Nam-Ho Kyung, Won-Pyo Hong, “Modeling and control of DFIG-based variable speed wind-turbineâ€, Electric power system Research, vol. 78, pp. 1841-1849, 2008.

N.S. Nise, Control Systems Engineering, John Wiley & Sons, Hoboken, USA, 2008.

T. Ackermann, Wind Power in Power Systems, John Wiley & Sons, Hoboken, USA, 2008.

S. Heier, Grid Integration of Wind Energy Conversion Systems. New York: John Wiley & Sons, 1998.

Merkhouf A, Doyon P, Upadhyay S. "Variable frequency transformer – concept and electromagnetic design evaluation", IEEE Trans Energy Conversion, vol. 23, no. 4, pp. 989–96, 2008.

R. J. Piwko, E. V. Larsen, C. A. Wegner, "Variable frequency transformer-a new alternative for asynchronous power transfer", in Proc. IEEE Power Eng. Soc. Conf. Expo., Durban, pp. 393–398, 2005.

M. N. Anwar, S. Pan, "A new PID load frequency controller design method in frequency domain through direct synthesis approach", Electrical Power and Energy Systems, vol. 67, pp. 560-569, 2015.

Mary A.G Ezhil, Joseph Jawhar, Chellaswamy C, “Optimized PIDF controller for enhancing stability in power system with UPFC and Redox flow batteriesâ€, International Journal of Applied Engineering Research, Vol. 11, no. 8, pp. 14902-15913. 2016.

Y. Valle, G.K. Venayagamoorthy, S. Mohagheghi, J.C. Hernandez, R.G. Harley, "Particle swarm optimization: Basic concepts, variants an applications in power systems", IEEE Transactions on Evol. Comput., vol. 12, pp. 171-195, 2008.

Russell C. Eberhart, Yuhui Shi, "Particle Swarm Optimization: Developments, Applications, and Resources", Evolutionary Computation, Proceedings of the IEEE Congress, pp. 27-30, 2001.

Om Prakash Bharti, R. K. Saket, S. K. Nagar, "Controller Design For DFIG Driven By Variable Speed Wind Turbine Using Static Output Feedback Technique", Engineering, Technology & Applied Science Research, vol. 6, No. 4, pp-1056-1061, 2016.

C. Chellaswamy, R. Ramesh, C.Y. Visveswar Rau, "A supervisory control of a fuel free electric vehicle for green environment", IEEE International Conference on Emerging Trends in Electrical Engineering and Energy Management, pp. 387-393, 2012.

H. Polinder, F.F.A. van der Pijl, G.J. de Vilder, P. Tavner, "Comparison of direct-drive and geared generator concepts for wind turbines", IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 725-733, 2006.




How to Cite

C, C., R, M., N, P., & R, R. (2017). Reduction of Power Fluctuation in Wind Turbine Using Variable Frequency Transformer and Optimized PID Controller. Asian Journal of Applied Sciences, 5(5). Retrieved from

Similar Articles

You may also start an advanced similarity search for this article.