Antioxidant Effects of Eryngium carlinae in Diabetic Rats

Authors

  • Diana García-Cerrillo Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
  • Ruth Noriega-Cisneros Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo
  • Donovan Peña-Montes Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
  • Maribel Huerta-Cervantes Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
  • Mónica Silva-Ríos Centro Universitario de Investigaciones Biomédicas. Universidad de Colima
  • Rafael Salgado-Garciglia Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
  • Rocío Montoya-Pérez Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
  • Alfredo Saavedra-Molina Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.24203/ajas.v6i5.5482

Keywords:

Antioxidants, Cardiovascular disease, Diabetes, Hypoglycemia, Oxidative stress

Abstract

Metabolic diseases have increased considerably such as diabetes mellitus (DM). Since diabetes is a systemic disease, it implies high cardiovascular risks. It has been widely established that cardiac injury is related to mitochondrial dysfunction through increment of reactive oxygen species (ROS). Synthetic antioxidants can have important side effects; therefore natural sources may represent a better option. Traditional Mexican medicine has been using Eryngium carlinae (EC) for medical treatment. Also our group showed that hexanic extract possesses in vitro antioxidant capacity. Experimental diabetes in Wistar rats was generated by streptozotocin (STZ) and hexanic extract of EC was supplied for 7 weeks (30 mg/kg). Cholesterol, triacylglycerides, glucose, and thiobarbituric acid reactive substances (TBARS) levels were determined in serum. Mitochondria from left ventricle were used in the quantification of TBARS, reduced glutathione, nitric oxide (NO) levels and activity of superoxide dismutase (SOD) enzyme was performed.  Biochemical parameters of glucose and triacylglycerides, as well as TBARS levels in serum show a significant reduction in diabetic group supplied with EC hexanic extract. Thus, we can conclude that the EC hexanic extract possesses antioxidant activity in vitro, and in vivo, by reducing glucose and triacylglycerides levels during hyperglycemia, which may eventually reduce the risk of developing diabetic cardiomyopathy.

Author Biographies

  • Diana García-Cerrillo, Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
    Graduate student
  • Ruth Noriega-Cisneros, Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo
    Ph.D.
  • Donovan Peña-Montes, Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
    Graduate student
  • Maribel Huerta-Cervantes, Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
    Graduate student
  • Mónica Silva-Ríos, Centro Universitario de Investigaciones Biomédicas. Universidad de Colima
    Ph.D.
  • Rafael Salgado-Garciglia, Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
    Ph.D.
  • Rocío Montoya-Pérez, Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo
    Ph.D.
  • Alfredo Saavedra-Molina, Instituto de Investigaciones Químico Biológicas. Universidad Michoacana de San Nicolás de Hidalgo

    Department of Biochemistry.

    Principal Investigator. Professor.

References

G. Engström, J.G. Smith, M. Persson, P.M. Nilsson, O. Melander, B. Hedblad, “Red cell distribution width, haemoglobin A1c and incidence of diabetes mellitus†J. Intern. Med. vol. 276, no. 2, 174-83, 2014.

S. Vallejo, E. Palacios, T. Romacho, L. Villalobos, C. Peiró, C.F. Sánchez-Ferrer, “The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic ratsâ€, Cardiovasc. Diabetol. vol. 13, pp. 158, 2014.

Y. Wang, P.T. Katzmarzyk, R. Horswell, W. Zhao, J. Johnson, G. Hu, “Kidney function and the risk of cardiovascular disease in patients with type 2 diabetes†Kidney Int. vol. 85, no. 5, pp. 1192-1199, 2014.

J.C. Ferreira Braga, F. Guimaraes Filho, F. Villaca, C.A. Padovani, B.B. Matsubara, “Diastolic Dysfunction in Diabetic Normotensive Patients, Regardless of the Presence of Microangiopathyâ€, Arq. Bras. Cardiol. vol. 84, no. 6, pp. 1-5, 2005.

K. Levitt, L. Vivas, B. Courtney, K.A. Connelly, “Vascular imaging in diabetes†Curr. Atheroscler. Rep. vol. 16, no. 4, pp. 399, 2014.

J.M. Forbes, M.E. Cooper, “Mechanisms of diabetic complications†Physiol. Rev. vol. 93, pp. 137-188. 2013.

Q. Liang, S. Kobayashi, “Mitochondrial quality control in the diabetic heartâ€, J. Mol. Cell. Cardiol. vol. 95, pp. 57-69, 2015.

N.M. Al-Rasheed, N.M. Al-Rasheed, I.H. Hasan, M.A. Al-Amin, H.N. Al-Ajmi, A.M. Mahmoud, “Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic ratsâ€, Drug Des. Devel. Ther. vol. 10, pp. 2095-2107, 2016.

X. Gao, Y. Xu, B. Xu, Y. Liu, J. Cai, H.M. Liu, S. Lei, Y.Q. Zhong, M.G. Irwin, Z. Xia, “Allopurinol attenuates left ventricular dysfunction in rats with early stages of streptozotocin-induced diabetes†Diabetes Metab. Res. Rev. vol. 28, pp. 409-417, 2012.

W.S. Choo, W.K. Yong, “Antioxidant properties of two species of Hylocereus fruits†Adv. Appl. Sci. Res. vol. 2, pp. 418-425, 2011.

R. Noriega-Cisneros, O. Ortiz-Avila, E. Esquivel-Gutiérrez, M. Clemente-Guerrero, S. Manzo-Avalos, R. Salgado- Garciglia, C. Cortés-Rojo, I. Boldogh, A. Saavedra-Molina, “Hypolipidemic activity of Eryngium carlinae on streptozotocin-induced diabetic rats†Biochem. Res. Int. vol. 2012, pp. 1-5, 2012.

L.C. Cefali, E.C. Cazedey, T.M. Souza-Moreira, M.A. Correo, V.L. Isaac, “Antioxidant activity and validation of quantification method for lycopene extracted from tomato†J. AOAC. Int. vol. 98, no. 5, pp. 1340-1345, 2015.

M.S. Blois, “Antioxidant determinations by the use of a stable free radical†Nature, vol. 181, pp. 1199-1200, 1958.

H. Ohkawa, N. Ohishi, K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction†Anal. Biochem. vol. 95, no. 2, pp. 351-358. 1979.

R.J. Ruch, S.J. Cheng, J.E. Klaunig, “Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea†Carcinogenesis, vol. 10, no. 6, pp. 1003-1008, 1989.

R. Moreno-Sánchez, R. Hansford, “Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration†Biochem. J. vol. 256, pp. 403-412. 1988.

J. Buege, S. Aust, “Microsomal lipid peroxidationâ€, Methods Enzimol., vol. 52, pp. 302-310, 1978.

D. Jollow, J.R. Mitchell, N. Zampaglione, J. Gillete, “Bromobenzene-induced liver necrosis, protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metaboliteâ€, Pharmacology, vol. 11, pp. 151-169, 1974.

L. Green, D.G. Wagner, P. Skipper, J. Wishnok, S. Tannenbaum, “Analysis of nitrate, and [15 N] nitrate in biological fluids†Anal. Biochem. vol. 126, pp. 131-138, 1982.

Y. Kayama, U. Raaz, A. Jagger, M. Adam, I.N. Schellinger, M. Sakamoto, H. Suzuki, K. Toyama, J.M. Spin, P.S. Tsao, “Diabetic cardiovascular disease induced by oxidative stress†Int. J. Mol. Sci. vol. 16. No. 10, pp. 25234- 25263, 2015.

J. Díez, B. López, A. González, N. Ardanaz, M.A. Fortuño, “Genetics and molecular biology in cardiology (IV). Myocardial response to biomechanical stress†Rev. Esp. Cardiol. vol. 54, pp. 507-515, 2001.

R.J. Patil, R.Y. Patil, B. Ahirwar, D. Ahirwar, “Evaluation of antidiabetic and related actions of some Indian medicinal plants in diabetic rats†Asian Pac. J. Trop. Med. vol. 4, no. 1, pp. 20-23, 2011.

D.M. Nathan, P.A. Cleary, J.Y. Backlund, S.M. Genuth, J.M. Lachin, T.J. Orchard, P. Raskin, B. Zinman, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes†N. Engl. J. Med. vol. 35, no. 25, pp. 2643-2653, 2005.

A.M. Cordero-Reyes, A.A. Gupte, K.A. Youker, M. Loebe, W.A. Hsueh, G. Torre- Amione, H. Taegtmeyer, D.J. Hamilton, “Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function†J. Mol. Cell. Cardiol. vol. 68, pp. 98-105, 2014.

S. Samarghandian, A. Borji, M.B. Delkhosh, F. Samini, “Safranal treatment improves hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats†J. Pharm. Pharm. Sci. vol. 16, no. 2, pp. 352-362, 2013.

J. Thierer, “Insuficiencia cardiaca y diabetes†Rev. Argent. Cardiol. vol. 74, pp. 60-67, 2006.

I.H. Schulman, M.S. Zhou, L. Raij, “Interaction between nitric oxide and angiotensin II in the endothelium: role in atherosclerosis and hypertension†J. Hypertens. Suppl. vol. 24, no. 1, pp. S45-50, 2006.

C.A. Pieme, J.A. Tatangmo, G. Simo, P.C. Biapa Nya, V.J. Ama Moor, B. Moukette Moukette, F. Tankeo Nsufo, B.L. Njinkio Nono, E. Sobngwi, “Relationship between hyperglycemia, antioxidant capacity and some enzymatic and non-enzymatic antioxidants in African patients with type 2 diabetes†BMC Res. Notes, vol. 10, pp. 141, 2017.

Downloads

Published

2018-10-20

How to Cite

Antioxidant Effects of Eryngium carlinae in Diabetic Rats. (2018). Asian Journal of Applied Sciences, 6(5). https://doi.org/10.24203/ajas.v6i5.5482

Similar Articles

41-50 of 59

You may also start an advanced similarity search for this article.