Nigella sativa Oil Improves Follicular Reserve in Cyclophosphamide-Induced Ovarian Toxicity: A Histomorphological and Hormonal Assessment in Female Rats

Authors

  • Murtala Muhammad Jibril Department of Human Anatomy, Faculty of Basic Medical Sciences, Saadu Zungur University, Bauchi State, Nigeria https://orcid.org/0000-0002-6170-3194
  • Mohammed Bello Mohammed Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Jos, Plateau State, Nigeria
  • Adamu Usman Garkuwa Department of Human Physiology, Faculty of Basic Medical Sciences, Saadu Zungur University, Bauchi State, Nigeria
  • Samuel Ede Otokpa Department of Pharmacology, Faculty of Pharmaceutical Sciences, University of Jos, Plateau State, Nigeria
  • Ali Isha Shugaba Department of Human Anatomy, Faculty of Basic Medical Sciences, Federal University Lafia, Nasarawa State, Nigeria
  • Ekwere O. Ekwere Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Jos, Plateau State, Nigeria

DOI:

https://doi.org/10.24203/t25jd689

Keywords:

Nigella sativa, Reproduction, Ovarian toxicity

Abstract

This study investigates the protective effects of Nigella sativa oil (NSO) against cyclophosphamide-induced ovarian toxicity in female rats. The research evaluates histological changes in ovarian tissue and their correlation with serum gonadotropin levels. Female rats were assigned to three experimental groups treated with cyclophosphamide, NS-Oil, or a combination, alongside a control group. Ovarian histology was assessed for structural integrity, follicular development, and toxicity, while serum estradiol and progesterone levels were measured. Cyclophosphamide administration significantly disrupted ovarian architecture, reducing follicle count and inducing follicular degeneration. NS-Oil treatment demonstrated protective effects, restoring normal ovarian histology and improving gonadotropin levels. Although body weight showed no significant difference among groups, ovarian weight decreased in cyclophosphamide-treated rats (p < 0.05) but increased dose-dependently with NS-Oil treatment (p < 0.05). Cyclophosphamide significantly reduced ovarian cortex and medulla volumes (p < 0.05), while NS-Oil treatment reversed these effects (p < 0.05). Pre-antral and antral follicle counts declined with cyclophosphamide but increased following NS-Oil administration (p < 0.05). Atretic follicle counts were lower in NS-Oil-treated groups (p < 0.05). NS-Oil also enhanced follicular diameters affected by cyclophosphamide (p < 0.05). These findings suggest that NS-Oil may mitigate ovarian toxicity caused by cyclophosphamide, offering a potential therapeutic approach to preserve reproductive health during chemotherapy. Further research is needed to elucidate its mechanisms and clinical applicability.

Author Biographies

  • Murtala Muhammad Jibril, Department of Human Anatomy, Faculty of Basic Medical Sciences, Saadu Zungur University, Bauchi State, Nigeria

    Department of Human Anatomy, Faculty of Basic Medical Sciences

  • Mohammed Bello Mohammed, Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Jos, Plateau State, Nigeria

    Department of Human Anatomy, Faculty of Basic Medical Sciences

  • Adamu Usman Garkuwa, Department of Human Physiology, Faculty of Basic Medical Sciences, Saadu Zungur University, Bauchi State, Nigeria

    Department of Human Physiology, Faculty of Basic Medical Sciences

  • Samuel Ede Otokpa, Department of Pharmacology, Faculty of Pharmaceutical Sciences, University of Jos, Plateau State, Nigeria

    Department of Pharmacology, Faculty of Pharmaceutical Sciences

  • Ali Isha Shugaba, Department of Human Anatomy, Faculty of Basic Medical Sciences, Federal University Lafia, Nasarawa State, Nigeria

    Department of Human Anatomy, Faculty of Basic Medical Sciences, Professor

  • Ekwere O. Ekwere, Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Jos, Plateau State, Nigeria

    Department of Human Anatomy, Faculty of Basic Medical Sciences, Professor

References

1. Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 19(2), 164–174. https://pubmed.ncbi.nlm.nih.gov/24778671

2. Abd El Aziz, A. E., el Sayed, N. S., & Mahran, L. G. (2011). Anti-asthmatic and anti-allergic effects of thymoquinone on airway-induced hypersensitivity in experimental animals. Journal of Applied Pharmaceutical Science, 1(8), 109–117.

3. Abd Rani, N. Z., Husain, K., & Kumolosasi, E. (2018). Moringa Genus: A Review of Phytochemistry and Pharmacology . In Frontiers in Pharmacology. (Vol. https://www.frontiersin.org/article/10.3389/fphar.2018.00108

4. Abdelsalam, S. A. E. and E. B. (2018). Some Biological and Pharmacological Effects of the Black Cumin (Nigella sativa): A Concise Review. American Journal of Research Communication, 6(3). www.usa-journals.com,

5. Abdulrahman, F. T. J. H. M. A. (20 C.E.). The effects of Nigella sativa oil administration on some physiological and histological values of reproductive aspects of rats: The Iraqi Journal of Veterinary Medicine, 35(2)(50–60). https://doi.org/10.30539/iraqijvm.v35i2.576

6. Abeysinghe, D. T., Kumara, K. A. H., Kaushalya, K. A. D., Chandrika, U. G., & Alwis, D. D. D. H. (2021). Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon, 7(7), e07449–e07449. https://doi.org/10.1016/j.heliyon.2021.e07449

7. Adaku, A. (2018). Essential Oil from Nigella sativa Seed Differentially Ameliorates Steroid Genesis , Cellular ATP and Prostate Functions in Anti-Psychotic Drug- Induced Testicular Damage of Rats. 8(1), 1–9. https://doi.org/10.4172/2161-0495.1000371

8. Adewoyin, M., Ibrahim, M., Roszaman, R., Isa, M., Alewi, N., Rafa, A., & Anuar, M. (2017). Male Infertility: The Effect of Natural Antioxidants and Phytocompounds on Seminal Oxidative Stress. Diseases, 5(1), 9. https://doi.org/10.3390/diseases5010009

9. Aglave, H. (2018). Physiochemical characteristics of sesame seeds. Journal of Medicinal Plants Studies, 6(1), 64–66. http://dx.doi.org/10.1016/j.foodchem.2006.09.008

10. Ahmad, A., Husain, A., Mujeeb, M., Siddiqui, N. A., & Damanhouri, Z. A. (2012). Physicochemical and phytochemical standardization with HPTLC fingerprinting of Nigella sativa L . seeds. 1175–1182.

11. Ahmad, A., Mishra, R. K., Vyawahare, A., Kumar, A., Rehman, M. U., Qamar, W., Khan, A. Q., & Khan, R. (2019). Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharmaceutical Journal, 27(8), 1113–1126. https://doi.org/10.1016/j.jsps.2019.09.008

12. Ahmad, F., Ali, F., Amir, S., Saad, H. H., Wahab, S., Idreesh, M., Ali, M., & Mohan, S. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information . January.

13. Ahmad, W., Zeenat, F., & Shaiqua, A. (2017). Therapeutics , Phytochemistry and Pharmacology of an Important Unani Drug Kalonji ( Nigella sativa Linn ): A Review THERAPEUTICS , PHYTOCHEMISTRY AND PHARMACOLOGY OF AN IMPORTANT. July.

14. Ajayi, A. F., & Akhigbe, R. E. (2020). Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertility Research and Practice, 6(1), 1–15. https://doi.org/10.1186/s40738-020-00074-3

15. al Disi, S. S., Anwar, M. A., & Eid, A. H. (2016). Anti-hypertensive herbs and their mechanisms of action: Part I. Frontiers in Pharmacology, 6(JAN), 1–24. https://doi.org/10.3389/fphar.2015.00323

16. Alanazi, I. O., Benabdelkamel, H., Alfadda, A. A., AlYahya, S. A., Alghamdi, W. M., Aljohi, H. A., Almalik, A., & Masood, A. (2016). Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed). Applied Biochemistry and Biotechnology, 179(7), 1184–1201. https://doi.org/10.1007/s12010-016-2058-z

17. Alberts B, Johnson A, Lewis J, et al. (2002). Molecular Biology of the Cell. Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK26940/%0A

18. Algandaby, M. M. (2021). Quercetin attenuates cisplatin-induced ovarian toxicity in rats: Emphasis on anti-oxidant, anti-inflammatory and anti-apoptotic activities. Arabian Journal of Chemistry, 14(7), 103191. https://doi.org/10.1016/j.arabjc.2021.103191

19. Ali, B. A. (2001). on Blood Glucose in Albino Rats. 242–244.

20. Al-Johar, D., Shinwari, N., Arif, J., Al-Sanea, N., Jabbar, A. A., El-Sayed, R., Mashhour, A., Billedo, G., El-Doush, I., & Al-Saleh, I. (2008). Role of Nigella sativa and a number of its antioxidant constituents towards azoxymethane-induced genotoxic effects and colon cancer in rats. Phytotherapy Research, 22(10), 1311–1323. https://doi.org/https://doi.org/10.1002/ptr.2487

21. Al-Mamun, M., & Absar, N. (2019). Major nutritional compositions of black cumin seeds-cultivated in Bangladesh and the physicochemical characteristics of its oil. International Food Research Journal, 25, 2634–2639.

22. Alomar, M. Y. (2020). Physiological and histopathological study on the influence of Ocimum basilicum leaves extract on thioacetamide-induced nephrotoxicity in male rats. Saudi Journal of Biological Sciences, 27(7), 1843–1849. https://doi.org/https://doi.org/10.1016/j.sjbs.2020.05.034

23. Amin, B., & Hosseinzadeh, H. (2016). Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects. Planta Medica, 82(1-2)(8–16). https://doi.org/10.1055/s-0035-1557838

24. Amin, B., & Hosseinzadeh, H. (2016). Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects. Planta Medica, 82(1–2), 8–16. https://doi.org/10.1055/s-0035-1557838

25. Andrade, G. M., Collado, M. del, Meirelles, F. V., da Silveira, J. C., & Perecin, F. (2019). Intrafollicular barriers and cellular interactions during ovarian follicle development. Animal Reproduction, 16(3), 485–496. https://doi.org/10.21451/1984-3143-AR2019-0051

26. Angad, G., Veterinary, D. E. v, & Sciences, A. (2015). HISTOMORPHOCHEMICAL AND ULTRASTRUCTURAL CHARACTERIZATION OF HYPOTHALAMO-HYPOPHYSEAL-OVARIAN AXIS IN INDIAN BUFFALO ( Bubalus bubalis ) ( Minor Subject : Veterinary Physiology ) By Department of Veterinary Anatomy College of Veterinary Science GURU ANGAD D.

27. Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Environment International, 127, 819–847. https://doi.org/https://doi.org/10.1016/j.envint.2019.03.039

28. Arnal, J., Lenfant, F., Metivier, R., Flouriot, G., Henrion, D., Adlanmerini, M., Fontaine, C., Gourdy, P., Chambon, P., Katzenellenbogen, B., & Katzenellenbogen, J. (2022). MEMBRANE AND NUCLEAR ESTROGEN RECEPTOR ALPHA ACTIONS : FROM TISSUE SPECIFICITY TO MEDICAL IMPLICATIONS. Figure 2, 1045–1087. https://doi.org/10.1152/physrev.00024.2016

29. ARN.eBook. (n.d.).

30. Arroyo, A., Kim, B., & Yeh, J. (2020). Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reproductive Sciences, 27(6), 1223–1252. https://doi.org/10.1007/s43032-019-00137-x

31. Article, O. (2012). The enhancing effects of alcoholic extract of Nigella sativa seed on fertility potential, plasma gonadotropins and testosterone in male rats. 10(4), 355–362.

32. Assi, M. A., Hezmee, M., Noor, M., Farhana Bachek, N., Ahmad, H., Haron, A. W., Sabri, M., Yusoff, M., & Rajion, M. A. (2016). The Various Effects of Nigella sativa on Multiple Body Systems in Human and Animals. PJSRR Pertanika Journal of Scholarly Research Reviews, 2(3), 1–19. http://www.pjsrr.upm.edu.my/

33. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., Orhan, I. E., Banach, M., Rollinger, J. M., Barreca, D., Weckwerth, W., Bauer, R., Bayer, E. A., Majeed, M., Bishayee, A., Bochkov, V., Bonn, G. K., Braidy, N., Bucar, F., Cifuentes, A., D’Onofrio, G., Bodkin, M., … Taskforce, the I. N. P. S. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z

34. Atata, J. A., Esievo, K. A. N., Adamu, S., Abdulsalam, H., Avazi, D. O., & Ajadi, A. A. (2019). Haemato-biochemical studies of dogs with haemorrhage-induced dehydration. Comparative Clinical Pathology, 28(1), 129–135. https://doi.org/10.1007/s00580-018-2805-3

35. Atiku, I. A. (2018). Cephalic index in relation to academic performance among students of basic medical sciences, bayero university kano, nigeria. 4(1), 404–415.

36. Badar, A., Kaatabi, H., Bamosa, A., Al-Elq, A., Abou-Hozaifa, B., Lebda, F., Alkhadra, A., & Al-Almaie, S. (2017). Effect of Nigella sativa supplementation over a one-year period on lipid levels, blood pressure and heart rate in type-2 diabetic patients receiving oral hypoglycemic agents: Nonrandomized clinical trial. Annals of Saudi Medicine, 37(1), 56–63. https://doi.org/10.5144/0256-4947.2017.56

37. Bagnjuk, K., & Mayerhofer, A. (2019). Human luteinized granulosa cells—a cellular model for the human corpus luteum. Frontiers in Endocrinology, 10(JULY), 1–7. https://doi.org/10.3389/fendo.2019.00452

38. Bailey, E. J., Chang, A. B., & Thomson, D. (2008). In children with prolonged cough, does treatment with antibiotics have a better effect on cough resolution than no treatment? Part B: Clinical commentary. Paediatrics and Child Health, 13(6), 514. https://doi.org/10.1093/pch/13.6.514

39. Bakathir, H. A., & Abbas, N. A. (2011). Detection of the antibacterial effect of Nigella sativa ground seedswith water. African Journal of Traditional, Complementary and Alternative Medicines, 8(2), 159–164. https://doi.org/10.4314/ajtcam.v8i2.63203

40. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic . In Frontiers in Pharmacology (Vol. 12). https://www.frontiersin.org/article/10.3389/fphar.2021.643972

41. Bashir, M. U., & Qureshi, H. J. (2010). No Title Analgesic effect of Nigella sativa seeds extract on experimentally induced pain in albino mice. Journal of the College of Physicians and Surgeons--Pakistan, JCPSP, 20((464–467).

42. Benefits, H., Pharmacology, M., Dash, R., Sikder, M. H., Rahman, S., Timalsina, B., & Munni, Y. A. (2021). Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients.

43. Bieberich, E. (2014). Synthesis, Processing, and Function of N-glycans in N-glycoproteins. Advances in Neurobiology, 9, 47–70. https://doi.org/10.1007/978-1-4939-1154-7_3

44. Blaik, P. (2013). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. Gospodarka Materiałowa i Logistyka, 26(4), 185–197.

45. Blanc, L., & Wolfe, L. C. (2016). Chapter 9 - General Considerations of Hemolytic Diseases, Red Cell Membrane, and Enzyme Defects. In P. Lanzkowsky, J. M. Lipton, & J. D. Fish (Eds.), Lanzkowsky’s Manual of Pediatric Hematology and Oncology (Sixth Edition) (Sixth Edit, pp. 134–158). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-801368-7.00009-0

46. Boskabady, M. H., Keyhanmanesh, R., Khamneh, S., & Ebrahimi, M. A. (2011). The effect of Nigella sativa extract on tracheal responsiveness and lung inflammation in valbuminsensitized guinea pigs. Clinics, 66(5), 879–887. https://doi.org/10.1590/S1807-59322011000500027

47. Bridgewater, P., Upadhaya, S., Poudyal, B., Kunwar, R. M., Bussmann, R. W., & Paniagua-Zambrana, N. Y. (2020). Nigella sativa L. Ranunculaceae BT - Ethnobotany of the Himalayas (R. Kunwar, H. Sher, & R. W. Bussmann, Eds.; pp. 1–10). Springer International Publishing. https://doi.org/10.1007/978-3-030-45597-2_162-1

48. Brunt, V. E., Miner, J. A., Meendering, J. R., Kaplan, P. F., & Minson, C. T. (2012). Cutaneous Thermal Hyperemia But Not Reactive Hyperemia. 18(5), 347–355. https://doi.org/10.1111/j.1549-8719.2011.00095.x.17-

49. Bruyn, G. W. (1989). Human central nervous system. Journal of the Neurological Sciences, 92(1), 117. https://doi.org/10.1016/0022-510x(89)90181-0

50. BUREAU OF PUBLIC PROCUREMENT BIDDERS ’ CORRESPONDENCE DETAILS TEMPLATE Ministry : Name of Procuring Entity : Title of Procurement : (n.d.).

51. Butt, M. S., & Sultan, M. T. (2010). Nigella sativa : Reduces the Risk of Various Maladies Nigella sativa : Reduces the Risk. 8398. https://doi.org/10.1080/10408390902768797

52. Caligioni, C. S. (2009). Assessing Reproductive Status/Stages in Mice. Current Protocols in Neuroscience, 48(1), A.4I.1-A.4I.8. https://doi.org/https://doi.org/10.1002/0471142301.nsa04is48

53. Campinas, U. E. de, & Campinas, U. E. de. (2002). DETERMINATION OF THE ESTROUS CYCLE PHASES OF RATS : SOME HELPFUL CONSIDERATIONS. 62, 609–614.

54. Casarini, L., & Crépieux, P. (2019). Molecular Mechanisms of Action of FSH. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00305

55. Castellini, C., Mattioli, S., Signorini, C., Cotozzolo, E., Noto, D., Moretti, E., Brecchia, G., Dal Bosco, A., Belmonte, G., Durand, T., De Felice, C., & Collodel, G. (2019). Effect of Dietary n-3 Source on Rabbit Male Reproduction. Oxidative Medicine and Cellular Longevity, 3279670. https://doi.org/10.1155/2019/3279670

56. Chaklader, M. R., Fotedar, R., Howieson, J., Siddik, M. A. B., & Foysal, M. J. (2020). The ameliorative effects of various fish protein hydrolysates in poultry by-product meal based diets on muscle quality, serum biochemistry and immunity in juvenile barramundi, Lates calcarifer. Fish & Shellfish Immunology, 104, 567–578. https://doi.org/https://doi.org/10.1016/j.fsi.2020.06.014

57. Chassagne, F., Samarakoon, T., Porras, G., Lyles, J. T., Dettweiler, M., Marquez, L., Salam, A. M., Shabih, S., Farrokhi, D. R., & Quave, C. L. (2021). A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.586548

58. Chauvin, S., Cohen-Tannoudji, J., & Guigon, C. J. (2022). Estradiol Signaling at the Heart of Folliculogenesis: Its Potential Deregulation in Human Ovarian Pathologies. International Journal of Molecular Sciences, 23(1). https://doi.org/10.3390/ijms23010512

59. ChiauMingj, Md. S. A. A. HingGohefZannatUrbigMd. M. R. (2021). A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa L. Biomedicine & Pharmacotherapy, Volume 143(November 2021, 112182).

60. Choi, Y. J., Kim, N. N., Habibi, H. R., & Choi, C. Y. (2016). Effects of gonadotropin inhibitory hormone or gonadotropin-releasing hormone on reproduction-related genes in the protandrous cinnamon clownfish, Amphiprion melanopus. General and Comparative Endocrinology, 235, 89–99. https://doi.org/https://doi.org/10.1016/j.ygcen.2016.06.010

61. Choudhury, H., Pandey, M., Hua, C. K., Mun, C. S., Jing, J. K., Kong, L., Ern, L. Y., Ashraf, N. A., Kit, S. W., Yee, T. S., Pichika, M. R., Gorain, B., & Kesharwani, P. (2018). An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine, 8(3), 361–376. https://doi.org/10.1016/j.jtcme.2017.08.012

62. Chu, Y. L., Xu, Y. R., Yang, W. X., & Sun, Y. (2018). Aging-V10I3-101391 (1). 10(3), 305–321.

63. Clark, A. R., & Stokes, Y. M. (2011). Follicle structure influences the availability of oxygen to the oocyte in antral follicles. Computational and Mathematical Methods in Medicine, 2011. https://doi.org/10.1155/2011/287186

64. Clarke, H. J. (2018). Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley Interdisciplinary Reviews: Developmental Biology, 7(1), 1–33. https://doi.org/10.1002/wdev.294

65. Comish, P. B., Drumond, A. L., Kinnell, H. L., Anderson, R. A., Matin, A., Meistrich, M. L., & Shetty, G. (2014). Fetal cyclophosphamide exposure induces testicular cancer and reduced spermatogenesis and ovarian follicle numbers in mice. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0093311

66. Contreras-Zentella, M. L., & Hernández-Muñoz, R. (2016). Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress? Oxidative Medicine and Cellular Longevity, 2016, 3529149. https://doi.org/10.1155/2016/3529149

67. Coskun, D., Britto, D. T., Shi, W., & Kronzucker, H. J. (2017). How Plant Root Exudates Shape the Nitrogen Cycle. Trends in Plant Science, 22(8), 661–673. https://doi.org/https://doi.org/10.1016/j.tplants.2017.05.004

68. Cruz, G., Fernandois, D., & Paredes, A. H. (2017). Ovarian function and reproductive senescence in the rat: Role of ovarian sympathetic innervation. Reproduction, 153(2), R59–R68. https://doi.org/10.1530/REP-16-0117

69. da Broi, M. G., Giorgi, V. S. I., Wang, F., Keefe, D. L., Albertini, D., & Navarro, P. A. (2018a). Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. Journal of Assisted Reproduction and Genetics, 35(5), 735–751. https://doi.org/10.1007/s10815-018-1143-3

70. da Broi, M. G., Giorgi, V. S. I., Wang, F., Keefe, D. L., Albertini, D., & Navarro, P. A. (2018b). Influence of follicular fluid and cumulus cells on oocyte quality: Clinical implications. Journal of Assisted Reproduction and Genetics, 35(5), 735–751. https://doi.org/10.1007/s10815-018-1143-3

71. Darkwah, W. K., Kadri, A., Adormaa, B. B., & Aidoo, G. (2018). Cephalometric study of the relationship between facial morphology and ethnicity: Review article. Translational Research in Anatomy, 12(September), 20–24. https://doi.org/10.1016/j.tria.2018.07.001

72. David Lazer, Ryan Kennedy, Gary King, & Vespignani Alessandro. (2014). The Parable of Google Flu: Traps in Big Data Analysis. Science, 343(March), 1203–1205. www.sciencemag.orgSCIENCEVOL34314MARCH2014

73. Department Of General Histology General Embriology Introduction. (n.d.).

74. Dey, S., Samanta, P., Pal, S., Mukherjee, A. K., Kole, D., & Ghosh, A. R. (2016). Integrative assessment of biomarker responses in teleostean fishes exposed to glyphosate-based herbicide (Excel Mera 71). Emerging Contaminants, 2(4), 191–203. https://doi.org/https://doi.org/10.1016/j.emcon.2016.12.002

75. Dharmalingam, K., Birdi, A., Tomo, S., Sreenivasulu, K., Charan, J., Yadav, D., Purohit, P., & Sharma, P. (2021). Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian Journal of Clinical Biochemistry : IJCB, 36(4), 416–426. https://doi.org/10.1007/s12291-021-00961-6

76. Diederich, L., Iv, T. C. S. K., Kuhn, V., & Kramer, C. M. (2017). Red Blood Cell Function and Dysfunction : 26(13), 718–742. https://doi.org/10.1089/ars.2016.6954

77. Dollah, M. A., Parhizkar, S., Latiff, L. A., & bin Hassan, M. H. (2013). Toxicity effect of Nigella sativa on the liver function of rats. Advanced Pharmaceutical Bulletin, 3(1), 97–102. https://doi.org/10.5681/apb.2013.016

78. Dubey, P. N., Singh, B., Mishra, B. K., Kant, K., & Solanki, R. K. (2016). Nigella (Nigella sativa): A high value seed spice with immense medicinal potential. Indian Journal of Agricultural Sciences, 86(8), 967–979.

79. Ebrahimi, M., & Akbari Asbagh, F. (2011). Pathogenesis and causes of premature ovarian failure: an update. International Journal of Fertility & Sterility, 5(2), 54–65.

80. EFFECT ON REPRODUCTIVE SYSTEM. (n.d.).

81. Effenberger, K., Breyer, S., & Schobert, R. (2010). Terpene Conjugates of the Nigella sativa Seed-Oil Constituent Thymoquinone with Enhanced Efficacy in Cancer Cells. 7, 129–139.

82. Eid, A. M., Elmarzugi, N. A., Ayyash, L. M. A., Sawafta, M. N., & Daana, H. I. (2017). A Review on the Cosmeceutical and External Applications of Nigella sativa. 2017.

83. Eleawa, S. M., Alkhateeb, M. A., Alhashem, F. H., Bin-Jaliah, I., Sakr, H. F., Elrefaey, H. M., Elkarib, A. O., Alessa, R. M., Haidara, M. A., Shatoor, A. S., & Khalil, M. A. (2014). Resveratrol reverses cadmium chloride-induced testicular damage and subfertility by downregulating p53 and Bax and upregulating gonadotropins and Bcl-2 gene expression. Journal of Reproduction and Development, 60(2), 115–127. https://doi.org/10.1262/jrd.2013-097

84. Elements, T. B., Rodríguez-Álvarez, M., Paz, S., Hardisson, A., González-Weller, D., Rubio, C., & Gutiérrez, Á. J. (2011). Assessment of Toxic Metals (Al, Cd, Pb) and Trace Elements (B, Ba, Co, Cr, Cu, Fe, Mn, Mo, Li, Zn, Ni, Sr, V) in the Common Kestrel (. Biological Trace Element Research. https://doi.org/10.1007/s12011-021-02974-x

85. El-hack, M. E. A., & Alagawany, M. (2016). Review Article Nutritional , Healthical and Therapeutic Efficacy of Black Cumin ( Nigella sativa ) in Animals , Poultry and Humans. International Journal of Pharmacology, 12(3), 232–248. https://doi.org/10.3923/ijp.2016.232.248

86. Elkareem, M. A., Abd, M. A. M., Rahman, E., Khalil, N. S. A., & Amer, A. S. (2021). Antioxidant and cytoprotective effects of Nigella sativa L . seeds on the testis of monosodium glutamate challenged rats. Scientific Reports, 1–16. https://doi.org/10.1038/s41598-021-92977-4

87. El-kholy, A., Eraky, M., & Omar, G. (2018). Print ISSN : 1110 - 208X Online ISSN : 2357 - 0016. January. https://doi.org/10.4103/bmfj.bmfj

Downloads

Published

05-04-2025

Issue

Section

Articles

How to Cite

Nigella sativa Oil Improves Follicular Reserve in Cyclophosphamide-Induced Ovarian Toxicity: A Histomorphological and Hormonal Assessment in Female Rats. (2025). Asian Journal of Pharmacy, Nursing and Medical Sciences, 13(1). https://doi.org/10.24203/t25jd689