On the Classical Prime Radical Formula and Classical Prime of Semimodules
Keywords:
prime subsemimodule, classical prime subsemimodule, prime radical, classical prime radical, prime idealAbstract
Let $R$ be a commutative semiring and $M$ an  $R$ semimodule. A proper subsemimodule  $N$ of  $M$ is called a classical prime subsemimodule, if for any  $a,b\in R$ and  $m\in M, abm\in N$ implies that  $am\in N$ or $bm\in N$.  We will introduce and study the notion of prime bases for classical prime subsemimodules and utilize them to derive some formulas on the classical prime radical of subsemimodules of a semimodule. In particular, we study some basic properties of prime radical and classical prime radical of subsemimodule in  $M$. Moreover, we investigate relationships between classical prime radical and prime radical of subsemimodule in $M$.
References
Atani R. E., 2010. Prime subsemimodules of semimodules, International Journal of Algebra. 4(26): 1299-1306.
Atani S. E. and Darani A. Y., 2006. On quasi-primary submodules, Chiang Mai J. Sci. 33(3): 249-254.
Baziar M. and Behboodi M., 2009. Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8(3): 351-362.
Behboodi M., Jahani-nezhad R. and Naderi M. H., 2011. Classical quasi-primary submodules, Bulletin of the Iranian Mathematical Society. 37(4): 51-71.
Dubey M. K. and Sarohe P., 2013. On 2-absorbing semimodules, Quasigroups and Related Systems. 21: 175 -184.
Ebrahimi Atani R., 2010. Prime subsemimodules of semimodules, Int. J.of Algebra. 4(26): 1299-1306.
Ebrahimi Atani R. and Ebrahimi Atani S., 2010. On subsemimodules of semimodules, Buletinul Academiei De Stiinte. 2(63): 20 - 30.
Ebrahimi Atani S. and Shajari Kohan M., 2010. A note on finitely generated multiplication semimodules over comutative semirings, International Journal of Algebra. 4(8): 389-396.
Fuchs L., 1947. On quasi-primary ideals, Acta Univ. Szeged. Sect. Sci. Math. 11: 174-183.
Saffar Ardabili J., Motmaen S. and Yousefian Darani A., 2011. The spectrum of classical prime subsemimodules, Australian Journal of Basic and Applied Sciences. 5(11): 1824-1830.
Srinivasa Reddy M., Amarendra Babu V. and Srinivasa Rao P. V., 2013. Weakly primary subsemimodules of partial semimodules, International Journal of Mathematics and Computer Applications Research (IJMCAR), 3: 45- 56.
Tavallaee H.A. and Zolfaghari M., 2012. Some remarks on weakly prime and weakly semiprime submodules, Journal of Advanced Research in Pure Math., 4(1): 19 - 30.
Tavallaee H.A. and Zolfaghari M., 2013. On semiprime submodules and related results, J. Indones. Math. Soc., 19(1): 49-59.
Yesilot G., Oral, K. H. and Tekir, U., 2010. On prime subsemimodules of semimodules, International Journal of Algebra, 4(1): 53-60.
Downloads
Published
Issue
Section
License
Copyright © The Author(s). This article is published under the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.