On Exact Solutions to the 3-D Navier-Stokes Equations with emphasis on unsteady porous flow
Keywords:
exact solution, Navier-Stokes, porous, viscous flow, unsteady flow, swirl flow, Bessel functionsAbstract
Flow field analysis through porous boundaries is of great importance both in engineering as well as in bio-physical fields, such as transpiration cooling, soil mechanics, food preservation, blood flow and artificial dialysis. A new family of exact solution of the Navier–Stokes equations for unsteady laminar flow inside rotating systems of porous walls is presented in this study. The analytical solution of the Navier-Stokes equations is based on the use of the Bessel functions of the first kind. To resolve these equations analytically, it is assumed that the effect of the body force by mass transfer phenomena is the ‘porosity’ of the porous boundary in which the fluid moves. In the present study the effect of porous boundaries on unsteady viscous flow is examined for two different cases. The first one examines the flow between two rotated porous cylinders and the second one discusses the swirl flow in a rotated porous pipe. The results obtained reveal the predominant features of the unsteady flows examined. The developed solutions are of general application and can be applied to any swirling flow in porous axisymmetric rotating geometries.
Downloads
Published
Issue
Section
License
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.