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_________________________________________________________________________________ 

ABSTRACT— Flow field analysis through porous boundaries is of great importance both in engineering as well as 

in bio-physical fields, such as transpiration cooling, soil mechanics, food preservation, blood flow and artificial 

dialysis. A new family of exact solution of the Navier–Stokes equations for unsteady laminar flow inside rotating 

systems of porous walls is presented in this study. The analytical solution of the Navier-Stokes equations is based on 

the use of the Bessel functions of the first kind. To resolve these equations analytically, it is assumed that the effect of 

the body force by mass transfer phenomena is the ‘porosity’ of the porous boundary in which the fluid moves. In the 

present study the effect of porous boundaries on unsteady viscous flow is examined for two different cases.  The first 

one examines the flow between two rotated porous cylinders and the second one discusses the swirl flow in a rotated 

porous pipe. The results obtained reveal the predominant features of the unsteady flows examined. The developed 

solutions are of general application and can be applied to any swirling flow in porous axisymmetric rotating 

geometries. 
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1. INTRODUCTION 

In the previous years, problems of fluid flow through porous ducts have aroused the interest of Engineers and 

Mathematicians; the problems have been studied for their possible applications in cases of transpiration cooling, gaseous 

diffusion, drinking water treatment as well as biomedical engineering. The cases where an exact solution for the Navier-

Stokes equations can be obtained are of particular importance in order to describe fluid motion of viscous flows. 
However, since the Navier-Stokes equations are non-linear, there cannot be a general method to solve analytically the full 

equations. Exact solutions on the other hand are very important for many reasons. They provide a reference solution to 

verify the accuracies of many approximate methods such as numerical and/or empirical. Although, nowadays, computer 

techniques make the complete integration of the Navier-Stokes equations feasible, the accuracy of numerical results can 

be established only by comparison with an exact solution [1]. The Navier-Stokes equations were extensively studied in 

the literature. Exact solutions already known are one-dimensional or parallel shear flows, rectilinear motion flows, or 

duct flows [1,2].  

The problem of unsteady flow in porous tubes received much attention in recent years because of its various 

applications in biomedical engineering, for example in the dialysis of blood in artificial kidney, in the flow of blood in 

capillaries, in the flow in blood oxygenators, as well as in many other engineering areas such as the transpiration cooling 

[3]. 

Exact solutions are generally easy to find when suction or injection is applied to a fluid flow. In case of flows through 

porous media, a simple solution of the Navier-Stokes equations can be obtained for the flow over a porous plane 

boundary at which there is a uniform suction velocity [4].  

Moreover, fully developed laminar flow through a porous channel for low Reynolds numbers was investigated in [5] 

and the flow in a duct of rectangular cross-section in [6]. This problem was extended in [7] to high Reynolds numbers.  
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The exact solution of the Navier-Stokes equations for the case of steady laminar flow between two porous coaxial 

cylinders with different permeability was obtained using the perturbation technique [8]. The cylinders were assumed to 

rotate with different angular velocities and the fluid between them was flowing with a constant axial pressure gradient. A 

mathematical model for particle motion in viscous flow between two rotating porous cylinders was also presented [9]. In 

that paper, it was assumed a steady flow of a mixture of fluid and particles. The mass fraction of particles in the flow was 

small, so the perturbations of the mean liquid flow due to the presence of particles were negligible. Analytical 
approximate solution for decaying laminar swirling flows within a narrow annulus between two concentric cylinders was 

also obtained. It was found that the swirl velocity exhibits a Hagen-Poiseuille flow profile decaying downstream [10]. An 

exact solution of the Navier-Stokes equation was obtained in [11] for the laminar incompressible flow through a 

uniformly porous pipe with suction and injection. In this study the velocity field was expressed in a series form in terms 

of the modified Bessel function of the first kind of order n. For large values of the non-dimensional time, the unsteady 

flow solution approaches its asymptotic value of the steady state problem.  Laminar flow over pipes with injection and 

suction through the porous wall was studied by means of analytic solutions for the case of low Reynolds numbers [12]. 

In the present study the full unsteady three-dimensional Navier-Stokes equations are considered for the case of 

incompressible porous flow. An exact solution is obtained by employing the Bessel functions for the case of three-

dimensional unsteady flow between rotated porous cylinders and for the case of unsteady swirl flow in rotated porous 

pipes. 

2. MATHEMATICAL MODELLING 

Assuming for the first case study the flow of a Newtonian fluid through an annulus formed between two rotating 

cylinders, figure 1a, and, for the second case study the flow within a rotating cylindrical pipe, figure 1b, the basic 

equations are the mass conservation equation and the equations of motion (Navier-Stokes), in a cylindrical system of 

coordinates  zr ,,  where the z axis lies along the centre of the pipe, r  is the radial distance and   is the 

peripheral angle. 

 

 
 

Figure 1: (a) Flow between two rotating porous cylinders; (b) Flow within a rotating porous pipe. 

 

2.1 Governing Equations 

Considering that the flow modelling describes the motion of a homogeneous  Newtonian fluid the incompressible 

Navier-Stokes equations are the governing equations, while the following simplified assumptions are made:  

a) the rotating cylinders or the rotating pipe are considered of finite length 

b) the permeable wall boundary  is treated as a `fluid medium'. 

c) the gravitational forces due to the fluid weight are negligible. 

 

The continuity equation is: 
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3. SOLUTION METHODOLOGY 

3.1 Unsteady flow between two coaxial porous rotating cylinders 

An incompressible fluid of dynamic viscosity μ and density ρ is considered between two rotating cylinders of length 

L. The inner cylinder can rotate with peripheral velocity iR   and the outer can rotate with peripheral velocity oR  . 

At  time level 0t t  the fluid enters the cylinders gap uniformly at 
* 0z   and exits at 

*z L or at non-dimensional 

axial distance 1z  . 

The following boundary conditions are satisfied:  

For ir R  
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For the test case selected, the value of the axial velocity was set equal to zero at the outer radius. Resolving the 

system of equations (1) to (4), it was found that the axial velocity zu , the radial velocity ru  and the tangential velocity 

u , can be expressed in terms of the functions: 
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where , ,A C D  are integration constants and  rbJ0  and   rbJ1  are the Bessel functions of the First kind and b is the 

zero of 
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The constant D  is defined as 1 2D    , so it covers the case of counter-rotating cylinders or cylinders rotated in 

the counter-clockwise direction. 

The static pressure field is then calculated as: 
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where the Reynolds number is defined as: Re
U L
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The solution of the Navier-Stokes equations defined by equations (5) and (9) does satisfy the continuity equation (1) 

and momentum equations (2) to (4). 

Figure 2 shows the radial velocity distribution for three different time levels, namely for 0,1, 2t   along the radius. 

It was assumed that the inner non-dimensional (by the cylinders length L) radius is 0.1iR  , while the outer non-

dimensional radius is 0.8oR   for specific values of the constants , , ,A C D k . A decaying behaviour is observed 

along the radial gap.  

 

 
Figure 2: Distribution of the radial velocity in terms of radius for different time levels 

 

The tangential velocity distribution shows in figure 3 a reduction from the inner to the outer cylinder for 0,1, 2t  . 

As the time level increases more fluid is moving tangentially, thus tangential velocity values increase. 

 
Figure 3: Distribution of the tangential velocity in terms of radius for different time levels 

 
 

The axial velocity has a decaying distribution from the inner to the outer radius, figure 4.  
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Figure 4: Distribution of the axial velocity in terms of radius for different time levels 

 

 

Figure 5 shows the radial velocity distribution for a given time level for different non-dimensional axial positions, 

namely for 0, 0.3, 0.8z  .  

 
Figure 5: Distribution of the radial velocity in terms of radius for different axial positions 

 

The radial velocity decreases from the inlet to the outlet. The distribution of the tangential velocity found to satisfy 

the system of equations of motion is not a function of the axial distance, z according to equation (5c). So at any axial 

position, the tangential position has a constant radial distribution at given time levels.  

Figure 6 presents the axial velocity distribution for a given time level for different axial positions 0, 0.3, 0.8z  .  

The axial velocity shows an increase along the gap of the cylinders from the inlet to the outlet. 

 

 
Figure 6: Distribution of the axial velocity in terms of radius for different axial positions 
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3.2 Unsteady swirling flow in a rotated porous pipe 

An incompressible fluid of dynamic viscosity μ and density ρ is considered within a rotating pipe of length L. The 

inner pipe can rotate along its axis with peripheral velocity R  . At  time level 0t t  the fluid enters the pipe 

uniformly at 
* 0z   and exits at 

*z L or at non-dimensional axial distance 1z  . 

The following boundary conditions are satisfied:  

For 0r   0
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For the test case selected, the value of the axial velocity is zero at the outer radius. 

The axial velocity zu , the radial velocity ru  and the tangential velocity u , can expressed in terms of the functions: 
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where  rbJ0  and   rbJ1  are the Bessel functions of the First kind and , ,A B C  are integration constants. 

The static pressure field is then calculated as: 
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The solution of the Navier-Stokes equations defined by equations (11) and (12) does satisfy the continuity equation 

(1) and momentum equations (2) to (4). 

 

 
Figure 7: Distribution of the radial velocity in terms of radius for different time levels 

 

Figure 7 shows the radial velocity distribution for three different time levels, namely for 0,1, 2t   along the radius. 

A decaying behaviour is observed in this figure. The tangential velocity distribution found in equation (11c) is 

independent of the time variable t.  

The axial velocity has a decaying distribution towards the outer radius, figure 8.  
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Figure 8: Distribution of the axial velocity in terms of radius for different time levels 

 

Figure 9 shows the radial velocity distribution for a given time level for different non-dimensional axial positions, 

namely for 0, 0.3, 0.8z  . 

 
Figure 9: Distribution of the radial velocity in terms of radius for different axial positions 

 

The distribution of the tangential velocity found to satisfy the system of equations of motion is not a function of the 

axial distance, z. So at any axial position, the tangential position has a constant radial distribution at given time levels.  

Figure 10 presents the axial velocity distribution for a given time level for different axial positions 0, 0.3, 0.8z  .  The 

axial velocity shows an increase along the gap of the cylinders from the inlet to the outlet. 

 

 
Figure 10: Distribution of the axial velocity in terms of radius for different axial positions 
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4. CONCLUSIONS 

In this article, an original work presenting exact solutions of the Navier-Stokes equations in the presence of porous 

boundaries of axisymmetric rotating geometries is proposed. Such flows have significant industrial applications including 

filtration and particle separation.  

Two cases were examined. The first one is the unsteady flow between two rotating porous cylinders and the second 

one is the unsteady flow inside rotating porous pipes. In both cases, the Bessel functions of the first kind were used to 

compute the axial and radial components of the flow velocities, while the tangential flow velocity was found to depend 

only on the radius. For both cases, the velocity and pressure fields were found by means of analytical methods to satisfy 

the Navier-Stokes equations for laminar, incompressible unsteady flows.  

For the case of the unsteady flow inside two rotating cylinders, it was found that the maximum of the axial velocity 

shifts towards the inner cylinder. The axial and radial velocity components are independent of the rates of rotation of 

cylinders. The tangential flow velocity having the form of “free vortex” type of flow was found to satisfy the equations 

of motion. 

For the case of the swirl flow inside rotating pipes, it was found that the maximum of the axial velocity is at the 

centre of the pipe and decays towards the porous boundary at the maximum radius. Variations were observed also for the 
radial velocity component which also has a maximum close to the centre of the pipe. The linear variation of the tangential 

velocity having the form of “forced vortex” type of flow along the radius was found to satisfy the equations of motion . 
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