Multi-area Economic Dispatch with GUPFC using Improved Bat Algorithm

Authors

  • S Vijay Raj Research Scholar, Department of Electrical and Electronics Engineering, Annamalai University,
  • R. K. Santhi Department of Electrical and Electronics Engineering, Annamalai University, Chidambaram.

Keywords:

GUPFC, Multi-fuel active power cost, Multi-fuel reactive power cost Multi-fuel emissions, GUPFC installation cost, Transmission loss, Improved bat algorithm

Abstract

This paper presents an Improved bat algorithm for the multi area multi-fuel economic–emission dispatch problem. it implements many objectives to be better concealed by in operation constraints and device limits. The formulation of  practical generation cost consists cost of reactive power generation, shunt power injections, and total power losses, along with the conventional active power generation cost. An objective based on the concept of multi-fuel emissions makes the problem more practical, and a generalized unified power flow controller (GUPFC) is considered. An  improved bat algorithm is used to solve the multi-objective problem on the standard IEEE-30 bus.

References

.Song, Y.H. and In-Keun Yu, “Dynamic load dispatch with voltage security and environmental constraintsâ€, Electric Power System Research, Vol. 43, pp. 53-60, 1997.

.Shoults, Chang R.R., Helmick, S.K. and Grady, W.M. “A practical approach to unit commitment, economic dispatch and savings allocation for multiple-area pool operation with import / export constraintsâ€, IEEE Transactions on Power Apparatus and Systems, Vol. 99, No. 2, pp. 625-635, 1980.

.Wang, C. and Shasidehpur, S.M. “A decomposition approach to nonlinear multi-area generation scheduling with tie-line constraints using expert systemsâ€, IEEE Transactions on Power systems, Vol. 7, No. 4, pp. 1409-1418, 1992.

. Wang, C. and Shasidehpur, S.M. “Power generation scheduling for multi-area hydro thermal systems with tie line constraints, cascaded reservoirs and uncertain dataâ€, IEEE Transactions on Power Systems, Vol. 8, No. 3, pp. 1333-1340, 1993.

. Streiffert, D. “Multi-area Economic Dispatch with tie-line constraintsâ€, IEEE Transactions on Power systems, Vol. 10, No. 4, pp. 1946-1951, 1995.

. Basu, M.: Improved differential evolution for economic dispatch.Electr. Power Energy Syst. 63, 855–861 (2014).

. Bhattacharjee, K.; Bhattacharya, A.; Dey, S.H.N.: Oppositional real coded chemical reaction optimization for different economic dispatch problems. Electr. Power Energy Syst. 55, 378–391 (2014).

. Ghasemi, M.; Ghavidel, S.; Rahmani, S.; Roosta, A.; Falah, H.: A novel hybrid algorithm of imperialistic competitive algorithm

and teaching learning algorithm for optimal power flow problem with non-smooth cost functions. Eng. Appl. Artif. Intell. 29, 54– 69 (2014).

. Christry, A.; Ajay, P.; Raj, D.V.: Adaptive biogeography based predator-prey optimization technique for optimal power flow. Electr. Power Energy Syst. 62, 344–352 (2014).

. Babu, A.V.N.; Ramana, T.; Sivangaraju, S.: Analysis of optimal power flow problem based on two stage initialization algorithm. Electr. Power Energy Syst. 55, 91–99 (2014).

. Mandal, B.; Roy, P.K.; Mandal, S.: Economic load dispatch using krill herd algorithm. Electr. Power Energy Syst. 57, 1–10 (2014).

.vijayaraj.S and R.K.Santhi .:Multi-area economic dispatch using Improved bat algorithm. International Journal of Applied Engineering Research . Volume 10, pp 40139-40147, (2015).

. Niu, Q.; Zhang, H.; Wang, X.; Irwin, G.W.: A hybrid search with arithmetic crossover operation for economic dispatch. Electr.Power Energy Syst. 62, 237–257 (2014)

. dos Santos Coelho, L.; Bora, T.C.;Mariani, V.C.: Differential evolution based on truncated Levy-type flights and population diversity measure to solve economic load dispatch problems. Electr. Power Energy Syst. 57, 178–188 (2014).

. 15. Abido, M.A.; Al-Ali, N.A.: Multi-objective optimal power flow using differential evolution. Arab. J. Sci. Eng. 37(4), 991–1005 (2012)

. Coello, C.A.C.: A comprehensive survey of evolutionarybased multi-objective optimization techniques. Knowl. Inf. Syst. 1(3), 269–308 (1999).

. Abido, M.A.: Environmental/economic power dispatch using multi-objective evolutionary algorithms. IEEE Trans. Power Syst. 18(4), 1529–1537 (2003).

. Andrew, K.; Haiyang, Z.: Optimization of wind turbine energy and power factor with an evolutionary computation algorithm. Energy 35(3), 1324–1332 (2010)

. Srinivas, N.; Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221– 248 (1994)

. Abido, M.A.: A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electr. Power Syst. Res. 65, 71–81 (2003)

. Chang, C.S.; Liew, A.C.; Xu, J.X.;Wang, X.W.; Fan, B.: Dynamic security constrained multiobjective generation dispatch of longitudinally interconnected power systems using bicriterion global optimization. IEEE/PES Summer Meeting, SM 578-5 (1995)

. Streiffert,D.: Multi-area economic dispatch with tie line constrains. IEEE/PES Winter Meeting, WM 179-2 (1995)

. Romano, R.; Quintana, V.H.; Lopez, R.; Valadez, V.: Constrained economic dispatch of multi-area systems using the Dantzig–Wolfe decomposition principle. IEEE Trans. PAS 100(4), 2127– 2137 (1981)

. Ouyang, Z.; Shahidehpour, S.M.: Heuristicmulti-area unit commitment with economic dispatch. IEE Proc.-C 138(3), 242–252 (1991)

. Wernerus, J.; Soder, L.: Area price based multi-area economic dispatch with tie line losses and constraints, In: IEEE/KTH Stockholm Power Tech Conference, Sweden, pp. 710–715 (1995).

. Lai, L.L. and Ma, J.T. “Power flow control in FACTS using Evolutionary Programmingâ€, IEEE Transactions on Power systems, Vol. 4, pp. 109-113, 1995.

. Prasanna, T. S. and Somasundaram, P. “OPF with FACTS devices in interconnected power systems using fuzzy stochastic algorithms,†International Journal of Power and Energy Conversion, Vol. 1, No.2, pp.279-299, 2009b.

. Abbate, L.; Trovato, M.; Becker, C.; Handschin, E.: Advanced steady-state model of UPFC for power system studies. Power Eng. Soc. Summer Meet. (IEEE) 1, 449–454 (2002).

. Esquivel, C.R.F.; Acha, E.: Unified power flow controller: a critical comparison of Newton-Raphson UPFC algorithms in power flow studies. IEE Proc. Gener. Transm. Distrib. 144(5), 437–444 (1997).

. Vural, A.M.; Tumay, M.: Mathematical modeling and analysis of a unified power flow controller: a comparison of two approaches in power flow studies and effects of UPFC location. Electr. Power Energy Syst. 29, 617–629 (2007).

. Tumay, M.; Vural, A.M.; Lo, K.L.: The effect of unified power flow controller location in power systems. Electr. Power Energy Syst. 26, 561–569 (2004)

. Nabavi, S.M.H.; Khafafi,K.; Sakhavati,A.; Nahi, S.: Optimal location and sizing of SSSC using genetic algorithm in deregulated power market. Int. J. Comput. Appl. 22(4), 37–41 (2011).

. Shaheen, H.I.; Ghamgeen, I.; Cheng, R.S.J.: Optimal location and parameter setting of UPFC for enhancing power system security based on differential evolution algorithm. Electr. Power Energy Syst. 33, 94–105 (2011).

. Schauder, C.D.; Gyugyi, L.; Lund, M.R.; et al.: Operation of the unified power flow controller (UPFC) under practical constraints. IEEE Trans. Power Deliv. 13(2), 630–639 (1998).

. Lubis, R.S.; Hadi, S.P.; Tumiran: Modeling of theGeneralized Unified Power FlowController for Optimal Power Flow, ICEEI (IEEE), pp. 1–6 (2011)

. Zhang, X.-P.; Handschin, E.; Yao, M.M.: Modeling of the generalized unified power flow controller (GUPFC) in a nonlinear interior point OPF. IEEE Trans. Power Syst. 16(3), 367–373 (2001).

. Zhang, X.P.: Modeling of the interline power flow controller and the generalized unified power flow controller in Newton power flow. IEE Proc. Gener. Transm. Distrib. 150(3), 268–274(2003).

. Zhang, X.P.: Robust modeling of the interline power flow controller and the generalized unified power flow controller with small impedances in power flow analysis. Electr. Eng. 89, 1–9 (2006).

. Ghadimi, N.; Afkousi-Paqaleh, A.; Emamhosseini, A.: A PSO based fuzzy long-term multi objective optimization approach for placement and parameter setting of UPFC. Arab. J. Sci. Eng. 39(4), 2953–2963 (2014).

. Azizpanah-Abarghooee, R.;Narimani, M.R.;Bahmani-Firouzi, B.; Niknam, T.: Modified shuffled frog leaping algorithm for multi-objective optimal power flow with FACTS devices. J. Intell. Fuzzy Syst. 26, 681–692 (2014).

. Nandakumar, E.; Dhanasekaran, R.: Optimal power flow with FACTS controllers using hybrid PSO. Arab. J. Sci. Eng. 39(4), 3137–3146 (2014).

. Bhattacharyya, B.; Gupta, V.K.: Fuzzy based evolutionary algorithm for reactive power optimization with FACTS devices. Electr. Power Energy Syst. 61, 39–47 (2014).

. Dandachi, N.H.; Rawlins, M.J.; Alsac, O.; Paris, M.; Stott, B.: For OPF reactive pricing studies on the NGC system. IEEE Trans. Power Syst. 11(1), 11–17 (1996).

. Wills, L.; Finney, J.; Ramon, G.: Computing the cost of unbundled services. IEEE Comput. Appl. Power Syst. 9(4), 16–21 (1996).

.Lamont, J.W.; Fu, J.: Cost analysis of reactive support. IEEE Trans. Power Syst. 14, 890–898 (1999).

. Paucar, V.L.; Rider, M.J.: Reactive power pricing in deregulated electrical markets using a methodology based on the theory of marginal costs. In: Proceedings of the IEEE Large Engineering Systems Conference on Power Engineering, pp. 7–11 (2001).

. Vigneshwaran.D .;Sivakumar.;R, Vijayaraj.S .:Flower Pollination Algorithm for Economic Dispatch problem with Prohibited zones, Ramp rate limits & Multi-fuel options, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering,Vol. 4, Issue 11,pp no 1-8 November 2015.

. Chintalapudi Venkata Suresh and Sirigiri Sivanaga Raju.: Mathematical modelling and analysis of a Generalized Unified Power Flow Controller with Device rating Methodology, International Journal on Electrical Engineering and Informatics †Volume 7,pp.59-78, March 2015.

. Chintalapudi V Suresh, Sirigiri Sivanagaraju. :Analysis and effect of Generalized Unified power flow controller: An optimal location strategy, International Journal Of Innovative Research In Electrical, Electronics, Instrumentation And Control Engineering,pp.2146-2153 Vol. 2, issue 10, october 2014.

.Saravanan, M.; Slochanal, S.M.R.; Venkatesh, P.; Abraham, J.P.S.: Application of particle swarm optimization technique for optimal FACTS devices considering cost of installation and system loadability. Electr. Power Syst. Res. 77, 276–283 (2007)

. Manoharan, P.S.; Kannan, P.S.; Ramanathan, V.: A novel EP approach for multi-area economic dispatch with multiple fuel options. Turkish J. Electr. Eng. Comput. Sci. 17(1), 1–19 (2009).

.Dai,Y.; Liu,X.D.; Ni,Y.X.;Wen, F.S.; Han, Z.H.; Shen, C.M.;Wu,F.F.: A cost allocation method for reactive power service based in power flow tracing. Electr. Power Syst. Res. 64, 59–65 (2003).

. Chung, C.Y.; Chung, T.S.; Yu, C.W.; Lin, X.J.: Cost-based reactive power pricing with voltage security consideration in restructured power systems. Electr. Power Syst. Res. 70, 85–91 (2004).

. Hao, S.: A reactive power management proposal for transmission operators. IEEE Trans. Power Syst. 18, 1374–1381 (2003).

. Sayah, S.; Zehar, K.: Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers.Manag. 49, 3036–3042 (2008)

. Abido, M.A.: Optimal power flow using Tabu search algorithm. Electr. Power Compon. Syst. 30, 469–483 (2002)

. Arul, R.; Ravi, G.; Velsami, S.: Non-convex economic dispatch with heuristic load patterns, valve point loading effect, prohibited operating zones, ramp-rate limits, and spinning reserve constraints using harmony search algorithm. Electr. Eng. 95, 53–61 (2013)

. Zhu, J.;Momoh,J.A.: Multi-area power systems economic dispatch using nonlinear convex network flow programming. Electr. Power Syst. Res. 59, 13–20 (2001).

X.-S. Yang, A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010) (Eds. J. R. Gonzalez et al.), Studies in Computational Intelligence, Springer Berlin, 284, Springer, 65-74 (2010).

Xin-She Yang, Bat algorithm: literature review and applications, Int. J. Bio-Inspired Computation, Vol. 5, No. 3, pp. 141–149 (2013). DOI: 10.1504/IJBIC.2013.055093

Selim Yilmaz and Ecir U. Kucuksille. Improved Bat Algorithm on Continuous Optimization Problems. Lecture Notes on Software Engineering, Vol. 1, No. 3, August 2013.

. Zhang, X.-P.; Rehtanz, C.; Pal, B.; Flexible, A.C.: Transmission Systems: Modelling and Control (Power Systems). Springer, Berlin (2006); ISBN: 3540306064.

Chintalapudi V. Suresh • S. Sivanagaraju • J. Viswanatha Rao Multi-area Multi-fuel Economic–Emission Dispatch Using a Generalized Unified Power Flow Controller Under Practical Constraints, Arab J Sci Eng (2015) 40:531–549.

.

Downloads

Published

2016-11-28

How to Cite

Multi-area Economic Dispatch with GUPFC using Improved Bat Algorithm. (2016). Asian Journal of Applied Sciences, 4(5). https://ajouronline.com/index.php/AJAS/article/view/4268

Similar Articles

51-60 of 274

You may also start an advanced similarity search for this article.