Deep Learning Applications and Their Worth: A Short Review
DOI:
https://doi.org/10.24203/ajas.v10i5.7078Keywords:
Deep learning, Machine Learning, Applications, Artificial intelligence, AnalysisAbstract
Deep learning has become a favoured trend in many applications serving humanity in the past few years. Since deep learning seeks useful investigation and can learn and train huge amounts of unlabelled data, deep learning has been applied in many fields including the medical field. In this article, the most noteworthy applications of deep learning are presented shortly and positively, they are image recognition, automatic speech recognition, natural language processing, drug discovery and toxicology, customer relationship management, recommendation systems and bioinformatics. The report concluded that these applications have a significant and vital role in all areas of life.
References
Yamashita R., Long J., Longacre T., Peng L., Berry G., et al., “Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study,” The Lancet Oncology, vol.22, no.1, pp:132-141, January 2021. https://doi.org/10.1016/S1470-2045(20)30535-0
Aggarwal, K., Mijwil, M. M., Sonia, Al-Mistarehi, AH., Alomari, S., Gök M., Alaabdin, A. M., and Abdulrhman, S. H., “Has the Future Started? The Current Growth of Artificial Intelligence, Machine Learning, and Deep Learning,” Iraqi Journal for Computer Science and Mathematics, vol.3, no.1, pp:115-123, January 2022. https://doi.org/10.52866/ijcsm.2022.01.01.013
Faieq, A. K., and Mijwil, M. M., “Prediction of Heart Diseases Utilising Support Vector Machine and Artificial Neural Network,” Indonesian Journal of Electrical Engineering and Computer Science, vol.26, no.1, pp:374-380, April 2022. http://doi.org/10.11591/ijeecs.v26.i1.pp374-380
Abubakar H., Muhammad A., and Bello S., “Ants Colony Optimization Algorithm in the Hopfield Neural Network for Agricultural Soil Fertility Reverse Analysis,” Iraqi Journal For Computer Science and Mathematics, vol. 3, no. 1, pp:32–42, January 2022. https://doi.org/10.52866/ijcsm.2022.01.01.004
Mijwil, M. M., and Shukur B. S., “A Scoping Review of Machine Learning Techniques and Their Utilisation in Predicting Heart Diseases,” Ibn AL- Haitham Journal For Pure and Applied Sciences, vol. 35, no.3, pp: 175-189, July 2022. https://doi.org/10.30526/35.3.2813
Wu L., Wang J., He X., Zhu Y., Jiang X., et al., “Deep learning system compared with expert endoscopists in predicting early gastric cancer and its invasion depth and differentiation status (with videos),” Gastrointestinal Endoscopy, vol.95, no.1, pp:92-104.e3, January 2022. https://doi.org/10.1016/j.gie.2021.06.033
Ahmedt-Aristizabal D., Armin M. A., Denman S., Fookes C., and Petersson L., “Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future,” Sensors, vol.21, no.14, pp:1-48, July 2021. https://doi.org/10.3390/s21144758
Mijwil, M. M., Abttan R. A., and Alkhazraji A., “Artificial intelligence for COVID-19: A Short Article,” Asian Journal of Pharmacy, Nursing and Medical Sciences, vol.10, no.1, pp:1-6, May 2022. https://doi.org/10.24203/ajpnms.v10i1.6961
Mijwil, M. M., Mutar D. S., Filali Y., Aggarwal K., and Al-Shahwani H., “Comparison Between Expert Systems, Machine Learning, and Big Data: An Overview,” Asian Journal of Applied Sciences, vol.10, no.1, pp:83-88, March 2022. https://doi.org/10.24203/ajas.v10i1.6930
Bochie K., Gilbert M. S., Gantert L., Barbosa M. S. M., et al., “A survey on deep learning for challenged networks: Applications and trends,” Journal of Network and Computer Applications, vol.194, pp:103213, November 2021. https://doi.org/10.1016/j.jnca.2021.103213
Mijwil, M. M., “Implementation of Machine Learning Techniques for the Classification of Lung X-Ray Images Used to Detect COVID-19 in Humans,” Iraqi Journal of Science, vol.62, no.6., pp: 2099-2109, July 2021. https://doi.org/10.24996/ijs.2021.62.6.35.
Sarker I. H., “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions,” SN Computer Science, vol. 2, no.420, pp:1-20, August 2021. https://doi.org/10.1007/s42979-021-00815-1
Mijwil, M. M., and Abttan R. A., “Artificial Intelligence: A Survey on Evolution and Future Trends,” Asian Journal of Applied Sciences, vol.9, no.2, pp:87-93, April 2021. https://doi.org/10.24203/ajas.v9i2.6589
Dadhich, M., Pahwa, M.S., Jain, V., Doshi, R. (2021). Predictive Models for Stock Market Index Using Stochastic Time Series ARIMA Modeling in Emerging Economy. In: Manik, G., Kalia, S., Sahoo, S.K., Sharma, T.K., Verma, O.P. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-0942-8_26
Mijwil, M. M. and Al-Zubaidi, E. A., “Medical Image Classification for Coronavirus Disease (COVID-19) Using Convolutional Neural Networks,” Iraqi Journal of Science, vol.62, no.8, pp: 2740-2747, August 2021. https://doi.org/10.24996/ijs.2021.62.8.27.
Mijwil, M. M. and Salem I. E., “Credit Card Fraud Detection in Payment Using Machine Learning Classifiers,” Asian Journal of Computer and Information Systems, vol.8, no.4, pp:50-53, December 2020. https://doi.org/10.24203/ajcis.v8i4.6449
Al-Zubaidi, E. A., Mijwil, M. M., and Alsaadi, A. S., “Two-Dimensional Optical Character Recognition of Mouse Drawn in Turkish Capital Letters Using Multi-Layer Perceptron Classification,” Journal of Southwest Jiaotong University, vol.54, no.4, pp.1-6, Augusts 2019. https://doi.org/10.35741/issn.0258-2724.54.4.4.
Mijwil, M. M., Salem I. E, and Abttan R. A. “Utilisation of Machine Learning Techniques in Testing and Training of Different Medical Datasets,” Asian Journal of Computer and Information Systems, vol.9, no.5, pp:29-34, November 2021. https://doi.org/10.24203/ajcis.v9i4.6765
Mijwil M. M., Aggarwal K., Doshi R., Hiran K. K., Sundaravadivazhagan B. “Deep Learning Techniques for COVID-19 Detection Based on Chest X-ray and CT-scan Images: A Short Review and Future Perspective,” Asian Journal of Applied Sciences, vol.10, no.3, pp:224-231, July 2022. https://doi.org/10.24203/ajas.v10i3.6998
Qamar R., Bajao N., Suwarno I., and Jokhio F. A., “Survey on Generative Adversarial Behavior in Artificial Neural Tasks,” Iraqi Journal For Computer Science and Mathematics, vol. 3, no. 2, pp: 83–94, March 2022. https://doi.org/10.52866/ijcsm.2022.02.01.009
DLT Labs, “Understanding Machine Learning & Deep Learning,” Medium, March 2020, https://dltlabs.medium.com/understanding-machine-learning-deep-learning-f5aa95264d61
Mehta, R., Aggarwal, K., Koundal, D., Alhudhaif, A. and Polat, K., “Markov features based DTCWS algorithm for online image forgery detection using ensemble classifier in the pandemic”, Expert Systems with Applications, 185, p.115630, 2021. https://doi.org/10.1016/j.eswa.2021.115630
Mijwil, M. M. and Aggarwal K., “A Diagnostic Testing for People with Appendicitis Using Machine Learning Techniques,” Multimedia Tools and Applications, vol. 81, no. 3, pp:7011-7023, January 2022. http://doi.org/10.1007/s11042-022-11939-8.
Li Y., Zhao J., Lv Z., and Li J., “Medical image fusion method by deep learning,” International Journal of Cognitive Computing in Engineering, vol.2, pp:21-29, June 2021. https://doi.org/10.1016/j.ijcce.2020.12.004
Fortunati V., “How does deep learning in radiology work?,” Quantib, May 2019, https://www.quantib.com/blog/how-does-deep-learning-work-in-radiology
Dixit P. and Silakari S., “Deep Learning Algorithms for Cybersecurity Applications: A Technological and Status Review,” Computer Science Review, vol.39, pp:100317, February 2021. https://doi.org/10.1016/j.cosrev.2020.100317
Nayak S. R., Nayak D. R., Sinha U., Arora V., and Pachori R. B., “Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study,” Biomedical Signal Processing and Control, vol.64, pp:102365, February 2021. https://doi.org/10.1016/j.bspc.2020.102365
Mijwil, M. M., Aggarwal K., Mutar D. S., Mansour N., and Singh R. S. S., “The Position of Artificial Intelligence in the Future of Education: An Overview,” Asian Journal of Applied Sciences, vol.10, no.2, pp:102-108, May 2022. https://doi.org/10.24203/ajas.v10i2.6956
Mijwil, M., Al-Mistarehi, A. H., & Mutar, D. S. (2022). The Practices of Artificial Intelligence Techniques and Their Worth in the Confrontation of COVID-19 Pandemic: A Literature Review.
Kumar H., Soh P. J., and Ismail M. A., “Big Data Streaming Platforms: A Review,” Iraqi Journal For Computer Science and Mathematics, vol. 3, no. 2, pp:95–100, April 2022. https://doi.org/10.52866/ijcsm.2022.02.01.010
Sabah N., Sagheer A., and Dawood O., “Survey: (Blockchain-Based Solution for COVID-19 and Smart Contract Healthcare Certification),” Iraqi Journal For Computer Science and Mathematics, vol. 2, no. 1, pp: 1–8, January 2021. https://doi.org/10.52866/ijcsm.2021.02.01.001
Niu Y. and Korneev A., “Identification Method of Power Internet Attack Information Based on Machine Learning,” Iraqi Journal For Computer Science and Mathematics, vol. 3, no. 2, pp.:1–7, Feb. 2022. https://doi.org/10.52866/ijcsm.2022.02.01.001
Mahrishi, M., Hiran, K.K., Doshi, R. (2021). Selection of Cloud Service Provider Based on Sampled Non-functional Attribute Set. In: Abraham, A., Siarry, P., Ma, K., Kaklauskas, A. (eds) Intelligent Systems Design and Applications. ISDA 2019. Advances in Intelligent Systems and Computing, vol 1181. Springer, Cham. https://doi.org/10.1007/978-3-030-49342-4_62
Dadhich, Shruti, Vibhakar Pathak, Rohit Mittal, and Ruchi Doshi. "Machine learning for weather forecasting." In Machine Learning for Sustainable Development, pp. 161-174. De Gruyter, 2021.
Dadhich, M., Doshi, R., Mathur, S., Meena, R., Gujral, R.K. and Dhotre, P., 2021, September. Empirical Study of Awareness towards Blended e-learning Gateways during Covid-19 Lockdown. In 2021 International Conference on Computing, Communication and Green Engineering (CCGE) (pp. 1-6). IEEE.
Ramasamy, Jayaraj, Ruchi Doshi, and Kamal Kant Hiran. "Segmentation of Brain Tumor using Deep Learning Methods: A Review." In Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence, pp. 209-215. 2021.
Salem I. E., Mijwil M. M., Abdulqader A. W., and Ismaeel M. M., “Flight-Schedule using Dijkstra's Algorithm with Comparison of Routes Finding,” International Journal of Electrical and Computer Engineering, vol.12, no.2, pp:1675-1682, April 2022. http://doi.org/10.11591/ijece.v12i2.pp1675-1682.
Ali A. H., Abdullah M. Z., Abdul-wahab S. N., and Alsajri M., “A Brief Review of Big Data Analytics Based on Machine Learning,” Iraqi Journal For Computer Science and Mathematics, vol. 1, no. 2, pp. 13–15, 2020. https://doi.org/10.52866/ijcsm.2020.01.01.002
Mijwil, M. M., Al-Mistarehi, AH., Zahran D. J., Alomari S., and Doshi R., “Spanish Flu (Great Influenza) 1918: The Tale of The Most deadly Pandemic in History,” Asian Journal of Applied Sciences, vol.10, no.2, pp:109-115, May 2022. https://doi.org/10.24203/ajas.v10i2.6949
Chong D., “Deep Dive into Netflix’s Recommender System,” Towards Data Science, April 2020, https://towardsdatascience.com/deep-dive-into-netflixs-recommender-system-341806ae3b48
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Maad M. Mijwil, Dhamyaa Salim Mutar, Enas Sh. Mahmood, Murat Gök, Süleyman Uzun, Ruchi Doshi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.