The Poverty Modeling Using Small Area Estimation with Semiparametric P-Spline (A case study: Poverty in Bengkulu Province)


  • Idhia Sriliana Bengkulu University
  • Etis Sunandi
  • Ulfasari Rafflesia



Bengkulu Province, Poverty, Semiparametric Penalized Spline, Small Area Estimation


The main objective of this research is to model poverty in Bengkulu Province using small area estimation (SAE) with semiparametric penalized spline (P-Spline). Small area estimation is a statistical method that is often used to obtain an accurate information about poverty. When the linearity assumption on the basic SAE model is violated, a nonparametric approach is used as an alternative. One is the semiparametric  penalized spline. The small area  method with semiparametric approach has a more flexible model because it accommodates the relationship between response with linear and nonlinear predictors. In this study, poverty modeling in Bengkulu Province was based on average per capita expenditure through the estimation of SAE model parameters using semiparametric P-Spline to obtain a mixed-effect model regression equation as a poverty model. Based on the analysis result, the poverty model in Bengkulu Province is P-Spline linear model with one knot. This model has a GCV value of 148928361265.95. Poverty mapping in Bengkulu Province based on sample villages indicates the estimation of poverty using SAE model with P-Spline having the same trend with the direct estimator.

Author Biography

Idhia Sriliana, Bengkulu University

Statistical Department


Central Bureau of Statistics of Bengkulu Province, “Berita Resmi Statisti -Tingkat Kemiskinan di Provinsi Bengkulu Maret 2017â€. No. 42/07/17/XI, 17 July 2017, 2017.

Central Bureau of Statistics (BPS), Data Strategis BPS, Katalog BPS 1103003, No. 03220.1202. ISSN, 2087-2011, 2012.

N.G.N. Prasad, and J.N.K. Rao, “The estimation of the mean squared error of the small area estimatorsâ€, Journal of American Statistical Association, vol 85, pp. 163-171, 1990.

I. Sriliana, D. Agustina, and E. Sunandi. “Pemetaan kemiskinan di Kabupaten Mukomuko menggunakan small area estimation dengan pendekatan regresi penalized splineâ€, Jurnal Matematika Integratif, vol 12, No. 2, pp. 125-133, 2016.

F. Apriani, “Pemodelan pengeluaran per kapita menggunakan small area estimation dengan pendekatan semiparametrik penalized splineâ€, Program Pascasarjana, Institut Teknologi Sepuluh Nopember, Surabaya, 2017. Unpublished.

Z.W. Baskara, “Pendugaan area kecil menggunakan pendekatan penalized splineâ€. Program Pascasarjana, Institut Teknologi Sepuluh Nopember, Surabaya, 2014. Unpublished.

M.Y. Darsyah, and S. Iriyanto, “Analysis of poverty in Indonesia with small area estimation: case in Demak Districtâ€, South East Asia Journal of Contemporary Business, Economics and Law, vol. 5, Issue 3, pp 18–23, 2014.

N. Salvati, H. Chandra, M.G. Ranalli, and R. Chambers, “Small area estimation using a nonparametric model based direct estimatorâ€, Centre for Statistical & Survey Methodology, University of Wollongong, Wollongong NSW, 2008.

D.J. Opsomer, G. Claeskens, M.G. Ranalli, G. Kauermann , and F.J. Breidt, “Non-parametric small area estimation using penalized spline regressionâ€, Royal Statistical Society Journal, vol.70, Part 1, pp 265–286, 2008.

J.N.K. Rao, Small area estimation, Wiley, London. 2003.

R.L. Eubank, Spline smoothing and nonparametric regression, Marcel Decker, New York, 1988.

C. Giusti, M. Pratesi, and N. Salvati, “A Semiparametric Fay-Herriot model using penalized splineâ€, Journal of The Indian Society Of Agricultural Statistics, 2012.




How to Cite

Sriliana, I., Sunandi, E., & Rafflesia, U. (2018). The Poverty Modeling Using Small Area Estimation with Semiparametric P-Spline (A case study: Poverty in Bengkulu Province). Asian Journal of Applied Sciences, 6(4).