Effect of Micro-bubbles Ozone for Inactivation of <i>Escherichia coli </i>O157:H7 on Fresh-cut Pineapple cv. Phu Lae


  • A. Chuajedton The Graduate School Chiang Mai University, Chiang Mai 52000
  • H. Aoyagi Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba Ibaraki 305-8572
  • J. Uthaibutra Postharvest Technology Innovation Center, Commission on Higher Education, Bangkok 10400
  • K. Whangchai Postharvest Technology Innovation Center, Commission on Higher Education, Bangkok 10400


Escherichia coli, fresh-cut, micro-bubbles ozone, pineapple


This study investigated the effect of micro-bubbles ozone (MBO) for inactivation of Escherichia coli O157:H7 on fresh-cut pineapple cv. “Phu Laeâ€. Fresh-cut pineapples were dip-inoculated with Escherichia coli O157:H7 (approximately 108 CFU/ml) and washed with MBO concentration of 0.14, 0.12, 0.06, and 0.03 mg O3/L at room temperature (28±1ºC) for 5, 10, 15 and 30 min, respectively ; then stored at room temperature (28±1ºC). The results showed that the population of Escherichia coli O157:H7 on fresh-cut pineapples washed with MBO for 10 min significantly reduced after storage for 2 days (less than 1 log10CFU/g) when compared to all treatments and the control (distilled water). Result from scanning electron microscope (SEM) obviously shown that less Escherichia coli O157:H7 in biofilms when compared to control. Therefore, the application of micro-bubbles ozone potentially enhance the ability of pathogenic control and prolonged shelf life of fresh-cut fruits


Office of Agricultural Economics. Statistical Export – import. Retrieved September 1, 2015, from


Jennylynd, B. J. & Ngarmsak, T. (2010). Processing of fresh-cut tropical fruits and vegetables: A technical guide.

Food and Agriculture Organization of the United Nations Regiolan Office for Asia and the Pacific Bangkok, 2010.

González, G. A., Ruiz-Cruz, S., Crua-Valenzuela, R., Rodríguez-Félix, A. and Wang, C. Y. 2004. Physiological and

quality changes of fresh-cut pineapple treated with antibrowning agents. Lebensmittel-Wissenschaft und-

Technologie 37: 369-376.

Nguyen-the, C. and Carlin, F. 1994. The microbiology of minimally processed fresh fruits and vegetables. Critcal

Review in Food Science and Nutrition 34(4): 371-401.

Puthmee, T. Matulaprungsan, B. and Kanlayanarat, S. 2010. Cutting styles of fresh-cut pineapple cv. Trad Seethong on quality after storage. Agricultural Science Journal 41(3/1)(Suppli.): 125-128.

Graham, D. M. 1997. Use of ozone for food processing. Food Technology 51: 72-75.

Xu, L. 1999. Use of ozone to improve the safety of fresh fruits and vegetables. Food Technology 53(10): 58–61, 63.

Hampson, B.C. and Fiori, S.R. 1997. Applications of ozone in food processing operations. Proceeding International

Ozone Association PAG, Lake Tahoe, Nev. 261-267.

Kim, J-G., Yousef, A-E. and Dave, S. 1999. Application of ozone for enhancing the microbiological safety and

quality of food: a review. Journal of Food Protection 62(9):1071-1087.

Kondo, F., Utoh, K., and Rostamibashman, M. 1989. Sterillizing effect of ozone water and ozone ice on various

microorganisms. Food Technology 53(10):58–61.

Takahashi, M., Chiba, K. and Li, P. 2007. Formation of hydroxyl radicals by collapsing ozone microbubbles under

strong acid conditions. The Journal of Physical Chemistry 111: 11443-11446.

Marui, T. 2013. An introduction to micro/nano-bubbles and their applications. Systemics, Cybernetics and

Informatics 11(4):68-73.

Li, P., Takahashi, M. and Chiba, K. 2012. Degradation of phenol by collapse of microbubbles. Chemosphere 75:


Inatsu, Y., Kitakawa, T., Nakamura, N., Kawasaki, S., Nei, D., Bari, M. L. and Kawamoto, S. 2011. Effectiveness of

stable ozone microbubble water on reducing bacteria on the surface of selected leafy vegetables. Food Science and

Technology Research 17 (6): 479-485.

Fukumoto, Y., Hashizume, K. and Nishimura, Y. 2010. Development of supply system of microbubble ozonated

water in agriculture. Horticulture Environmental Biotechnology. 5 (1): 21-27.

Hoigne, J. and Bader, H. 1980. Bestimmung von Ozon und Chlordioxid im Wasser mit der Indigo-Methode. Vom

Wasser 55:261.

Zimmerman, W.B, Tesar, V., Butler, Simon, B. and Bandulasena, HC. H. 2015. Microbubble generation. (Institute

of Thermomechanics) Retrieved from ftp://tepeu.sisal.unam.mx/microbubbles/ZimmermanTesaratal


Ozone. 1999. EPA Guidance Manual Alternative Disinfectants and Oxidant. Downloaded from http://water.epa.gov/lawsregs/rulesregs/sdwa/mdbp/upload_2001__12_mdbp_alter_chapt_3.pdf.

Jacek, M. 2012. Method for measuring ozone concentration in ozone-treated water. Przeglad elektrotechniczny

(electrical review) 88: 253-255.

Williams, R. C., Sumner, S. S. and Golden, A. A. 2004. Survival of Escherichia coli O157:H7 and Salmonella in

apple cider and orange juice as affected by ozone and treatment temperature. Journal of Food Protection


Keskinen, L. A., Burke, A. and Annous, B. A. 2009. Efficacy of chlorine, acidic electrolyzed water and aqueous

chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves. International Journal of

Food Microbiology 132:134-140.

Anupunpisit, V., Thanomsub, S., Chanphetch, S., Watcharachaipong, T., Poonkhum, R. and Srisukonth, C. 2002.

Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. The Journal of general and

applied microbiology 48:193-199.

Curtiellas, V., Gutiérrez, M., Sánchez, E., Fernández, I., Baluja, Ch., Bataller, M., Rodríguez, S. and Oncheta, O.

Characterization of E. coli cell lysis by ozone. Proceeding of the 17th Ozone World Congress, Strasbourg :





How to Cite

Chuajedton, A., Aoyagi, H., Uthaibutra, J., & Whangchai, K. (2016). Effect of Micro-bubbles Ozone for Inactivation of <i>Escherichia coli </i>O157:H7 on Fresh-cut Pineapple cv. Phu Lae. Asian Journal of Applied Sciences, 4(1). Retrieved from https://ajouronline.com/index.php/AJAS/article/view/3586