Current Practice and Approaches of Immunotherapy in Cancer Treatment
DOI:
https://doi.org/10.24203/ajas.v10i2.6941Keywords:
Immunotherapy, Cancer Immunotherapy, Immunomodulator, Chimeric Antigen ReceptorAbstract
Cancer has been and continues to be one of the leading causes of human deaths. Thousands lose their lives to the different types of cancer each year. Cancer remains one of those invincible barriers in the health sector that humans are quite far from overcoming. As cancer remains to be incurable, works are being done every day globally to come up with better ways to treat it. Conventional methods of treatment like chemo and radio therapies have adverse effects on health and thus, new approaches are being used for cancer treatment. One such approach is the use of our body’s own defense mechanism to attack and kill malignant cells. This review will highlight the different components of human immune system that are being used to treat cancer. It will give an idea of the mechanism of action of each of these components and indicate why they are better choices compared to traditional treatments. Side effects and/or challenges of each immunotherapy have also been included.
References
Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D., & Piñeros, M. et al. (2021). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.
Naghavi, M., Abajobir, A., Abbafati, C., Abbas, K., Abd-Allah, F., & Abera, S. et al. (2021). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016.
Cancer Statistics. (2021).
(COVID-19), C., Health, E., Disease, H., Disease, L., Management, P., & Conditions, S. et al. (2021). Is There a Cure for Cancer?
Side Effects of Chemotherapy. (2021). Retrieved 26 August 2021, from https://www.cancer.net/navigating-cancer-care/how-cancer-treated/chemotherapy/side-effects-chemotherapy
Partridge, A., Burstein, H., & Winer, E. (2001). Side Effects of Chemotherapy and Combined Chemohormonal Therapy in Women With Early-Stage Breast Cancer. JNCI Monographs, 2001(30), 135-142. doi: 10.1093/oxfordjournals.jncimonographs.a003451
Radiation Therapy Side Effects. (2021). Retrieved 26 August 2021, from https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy/side-effects
Immunotherapy for Cancer. (2021).
Rescigno, M., Avogadri, F., & Curigliano, G. (2021). Challenges and prospects of immunotherapy as cancer treatment
Zhang, Y., & Zhang, Z. (2021). The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications.
What is Immunotherapy?. (2021). Retrieved 26 August 2021, from https://www.cancerresearch.org/en-us/immunotherapy/what-is-immunotherapy
Monoclonal Antibodies and Their Side Effects. (2021). Retrieved 29 July 2021, from https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/monoclonal-antibodies.html
Nelson, P. (2000). Demystified ...: Monoclonal antibodies. Molecular Pathology, 53(3), 111-117. doi: 10.1136/mp.53.3.111
Sevier, E., David, G., Martinis, J., Desmond, W., Bartholomew, R., & Wang, R. (1981). Monoclonal antibodies in clinical immunology. Clinical Chemistry, 27(11), 1797-1806. doi: 10.1093/clinchem/27.11.1797
PONTECORVO, G., RIDDLE, P., & HALES, A. (1977). Time and mode of fusion of human fibroblasts treated with polyethylene glycol (PEG). Nature, 265(5591), 257-258. doi: 10.1038/265257a0
Korbakis, D., Brinc, D., Schiza, C., Soosaipillai, A., Jarvi, K., Drabovich, A., & Diamandis, E. (2015). Immunocapture-Selected Reaction Monitoring Screening Facilitates the Development of ELISA for the Measurement of Native TEX101 in Biological Fluids*. Molecular & Cellular Proteomics, 14(6), 1517-1526. doi: 10.1074/mcp.m114.047571
Lansdorp, P., Astaldi, G., Oosterhof, F., Janssen, M., & Zeijlemaker, W. (1980). Immunoperoxidase procedures to detect monoclonal antibodies against cell surface antigens. Quantitation of binding and staining of individual cells. Journal Of Immunological Methods, 39(4), 393-405. doi: 10.1016/0022-1759(80)90240-9
Hellstrom, I., & Hellstrom, K. (2014). Monoclonal Antibodies for Cancer Therapy. Encyclopedia Of Cancer, 1-9. doi: 10.1007/978-3-642-27841-9_7071-3
Alewine, C., Hassan, R., & Pastan, I. (2015). Advances in Anticancer Immunotoxin Therapy. The Oncologist, 20(2), 176-185. doi: 10.1634/theoncologist.2014-0358
Zahavi, D., & Weiner, L. (2020). Monoclonal Antibodies in Cancer Therapy. Antibodies, 9(3), 34. doi: 10.3390/antib9030034
Hansel, T., Kropshofer, H., Singer, T., Mitchell, J., & George, A. (2010). The safety and side effects of monoclonal antibodies. Nature Reviews Drug Discovery, 9(4), 325-338. doi: 10.1038/nrd3003
Chimeric Antigen Receptor (CAR) T-Cell Therapy | Leukemia and Lymphoma Society. (2021). Retrieved 30 July 2021, from https://www.lls.org/treatment/types-treatment/immunotherapy/chimeric-antigen-receptor-car-t-cell-therapy
Martínez Bedoya, D., Dutoit, V., & Migliorini, D. (2021). Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Frontiers In Immunology, 12. doi: 10.3389/fimmu.2021.640082
Benmebarek, M., Karches, C., Cadilha, B., Lesch, S., Endres, S., & Kobold, S. (2019). Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. International Journal Of Molecular Sciences, 20(6), 1283. doi: 10.3390/ijms20061283
Cullen, S., & Martin, S. (2007). Mechanisms of granule-dependent killing. Cell Death & Differentiation, 15(2), 251-262. doi: 10.1038/sj.cdd.4402244
Waring, P., & Müllbacher, A. (1999). Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunology And Cell Biology, 77(4), 312-317. doi: 10.1046/j.1440-1711.1999.00837.x
Walczak, H. (2013). Death Receptor-Ligand Systems in Cancer, Cell Death, and Inflammation. Cold Spring Harbor Perspectives In Biology, 5(5), a008698-a008698. doi: 10.1101/cshperspect.a008698
Textor, A., Listopad, J., Wührmann, L., Perez, C., Kruschinski, A., & Chmielewski, M. et al. (2014). Efficacy of CAR T-cell Therapy in Large Tumors Relies upon Stromal Targeting by IFNγ. Cancer Research, 74(23), 6796-6805. doi: 10.1158/0008-5472.can-14-0079
Whilding, L., & Maher, J. (2015). CAR T-cell immunotherapy: The path from the by-road to the freeway?. Molecular Oncology, 9(10), 1994-2018. doi: 10.1016/j.molonc.2015.10.012
FDA-approved CAR T-cell Therapies | UPMC Hillman. (2021). Retrieved 30 July 2021, from https://hillman.upmc.com/mario-lemieux-center/treatment/car-t-cell-therapy/fda-approved-therapies
Maude, S., Barrett, D., Teachey, D., & Grupp, S. (2014). Managing Cytokine Release Syndrome Associated With Novel T Cell-Engaging Therapies. The Cancer Journal, 20(2), 119-122. doi: 10.1097/ppo.0000000000000035
Davila, M., Riviere, I., Wang, X., Bartido, S., Park, J., & Curran, K. et al. (2014). Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 6(224), 224ra25-224ra25. doi: 10.1126/scitranslmed.3008226
Berraondo, P., Sanmamed, M., Ochoa, M., Etxeberria, I., Aznar, M., & Pérez-Gracia, J. et al. (2018). Cytokines in clinical cancer immunotherapy. British Journal Of Cancer, 120(1), 6-15. doi: 10.1038/s41416-018-0328-y
Waldmann, T. (2017). Cytokines in Cancer Immunotherapy. Cold Spring Harbor Perspectives In Biology, 10(12), a028472. doi: 10.1101/cshperspect.a028472
ROSENBERG, S., LOTZE, M., YANG, J., AEBERSOLD, P., LINEHAN, W., SEIPP, C., & WHITE, D. (1989). Experience with the Use of High-Dose Interleukin-2 in the Treatment of 652 Cancer Patients. Annals Of Surgery, 210(4), 474-485. doi: 10.1097/00000658-198910000-00008
Dutcher, J., Schwartzentruber, D., Kaufman, H., Agarwala, S., Tarhini, A., Lowder, J., & Atkins, M. (2014). High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014. Journal For Immunotherapy Of Cancer, 2(1). doi: 10.1186/s40425-014-0026-0
Charych, D., Khalili, S., Dixit, V., Kirk, P., Chang, T., & Langowski, J. et al. (2017). Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLOS ONE, 12(7), e0179431. doi: 10.1371/journal.pone.0179431
Lodolce, J., Boone, D., Chai, S., Swain, R., Dassopoulos, T., Trettin, S., & Ma, A. (1998). IL-15 Receptor Maintains Lymphoid Homeostasis by Supporting Lymphocyte Homing and Proliferation. Immunity, 9(5), 669-676. doi: 10.1016/s1074-7613(00)80664-0
Marshall, D., Sinclair, C., Tung, S., & Seddon, B. (2014). Differential Requirement for IL-2 and IL-15 during Bifurcated Development of Thymic Regulatory T Cells. The Journal Of Immunology, 193(11), 5525-5533. doi: 10.4049/jimmunol.1402144
Conlon, K., Lugli, E., Welles, H., Rosenberg, S., Fojo, A., & Morris, J. et al. (2015). Redistribution, Hyperproliferation, Activation of Natural Killer Cells and CD8 T Cells, and Cytokine Production During First-in-Human Clinical Trial of Recombinant Human Interleukin-15 in Patients With Cancer. Journal Of Clinical Oncology, 33(1), 74-82. doi: 10.1200/jco.2014.57.3329
Ratain, M., Golomb, H., Vardiman, J., Vokes, E., Jacobs, R., & Daly, K. (1985). Treatment of hairy cell leukemia with recombinant alpha 2 interferon. Blood, 65(3), 644-648. doi: 10.1182/blood.v65.3.644.bloodjournal653644
What are immunomodulators and how do they work? - KHNI. (2021). Retrieved 1 August 2021, from https://khni.kerry.com/news/what-are-immunomodulators-how-do-they-work/
Matsushita, M., & Kawaguchi, M. (2018). Immunomodulatory Effects of Drugs for Effective Cancer Immunotherapy. Journal Of Oncology, 2018, 1-7. doi: 10.1155/2018/8653489
Bascones-Martinez, A., Mattila, R., Gomez-Font, R., & Meurman, J. (2014). Immunomodulatory drugs: Oral and systemic adverse effects. Medicina Oral Patología Oral Y Cirugia Bucal, e24-e31. doi: 10.4317/medoral.19087
Li, Y., Zhang, X., Liu, X., Pan, W., Li, N., & Tang, B. (2021). Intelligent stimuli-responsive nano immunomodulators for cancer immunotherapy. Chemical Science, 12(9), 3130-3145. doi: 10.1039/d0sc06557a
Derissen, E., Beijnen, J., & Schellens, J. (2013). Concise Drug Review: Azacitidine and Decitabine. The Oncologist, 18(5), 619-624. doi: 10.1634/theoncologist.2012-0465
Schroeder, T., Rautenberg, C., Haas, R., & Kobbe, G. (2016). Hypomethylating agents after allogeneic blood stem cell transplantation. Stem Cell Investigation, 3, 84-84. doi: 10.21037/sci.2016.11.04
Srivastava, P., Paluch, B., Matsuzaki, J., James, S., Collamat-Lai, G., & Blagitko-Dorfs, N. et al. (2016). Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget, 7(11), 12840-12856. doi: 10.18632/oncotarget.7326
Fan, Y., Geng, Y., Shen, L., & Zhang, Z. (2020). Advances on immune-related adverse events associated with immune checkpoint inhibitors. Frontiers Of Medicine, 15(1), 33-42. doi: 10.1007/s11684-019-0735-3
Immune Checkpoints Role in Immunity & Cancer (Mini-review) | Bio-Rad. (2021). Retrieved 2 August 2021, from https://www.bio-rad-antibodies.com/immune-checkpoint-minireview.html
Marcucci, F., Rumio, C., & Corti, A. (2017). Tumor cell-associated immune checkpoint molecules – Drivers of malignancy and stemness. Biochimica Et Biophysica Acta (BBA) - Reviews On Cancer, 1868(2), 571-583. doi: 10.1016/j.bbcan.2017.10.006
Polyak, K., & Weinberg, R. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9(4), 265-273. doi: 10.1038/nrc2620
Webb, E. S., Liu, P., Baleeiro, R., Lemoine, N. R., Yuan, M., & Wang, Y. H. (2018). Immune checkpoint inhibitors in cancer therapy. Journal of biomedical research, 32(5), 317–326. https://doi.org/10.7555/JBR.31.20160168
. Sharpe, A. (2017). Introduction to checkpoint inhibitors and cancer immunotherapy. Immunological Reviews, 276(1), 5-8. doi: 10.1111/imr.12531
Schadendorf, D., Hodi, F., Robert, C., Weber, J., Margolin, K., & Hamid, O. et al. (2015). Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. Journal Of Clinical Oncology, 33(17), 1889-1894. doi: 10.1200/jco.2014.56.2736
Hodi, F., O'Day, S., McDermott, D., Weber, R., Sosman, J., & Haanen, J. et al. (2010). Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. New England Journal Of Medicine, 363(8), 711-723. doi: 10.1056/nejmoa1003466
Thompson, J., Hamid, O., Minor, D., Amin, A., Ron, I., & Ridolfi, R. et al. (2012). Ipilimumab in Treatment-naive and Previously Treated Patients with Metastatic Melanoma. Journal Of Immunotherapy, 35(1), 73-77. doi: 10.1097/cji.0b013e31823735d6
Topalian, S., Hodi, F., Brahmer, J., Gettinger, S., Smith, D., & McDermott, D. et al. (2012). Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. New England Journal Of Medicine, 366(26), 2443-2454. doi: 10.1056/nejmoa1200690
Ascierto, P., & Marincola, F. (2015). 2015: The Year of Anti-PD-1/PD-L1s Against Melanoma and Beyond. Ebiomedicine, 2(2), 92-93. doi: 10.1016/j.ebiom.2015.01.011
West, H. (2021). Immune Checkpoint Inhibitors. Retrieved 2 August 2021
Orange, M., Reuter, U., & Hobohm, U. (2016). Coley’s Lessons Remembered. Integrative Cancer Therapies, 15(4), 502-511. doi: 10.1177/1534735416649916
Russell, S., Peng, K., & Bell, J. (2012). Oncolytic virotherapy. Nature Biotechnology, 30(7), 658-670. doi: 10.1038/nbt.2287
Liu, B., Robinson, M., Han, Z., Branston, R., English, C., & Reay, P. et al. (2003). ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy, 10(4), 292-303. doi: 10.1038/sj.gt.3301885
Raja, J., Ludwig, J., Gettinger, S., Schalper, K., & Kim, H. (2018). Oncolytic virus immunotherapy: future prospects for oncology. Journal For Immunotherapy Of Cancer, 6(1). doi: 10.1186/s40425-018-0458-z
Kaufman, H., Kohlhapp, F., & Zloza, A. (2015). Oncolytic viruses: a new class of immunotherapy drugs. Nature Reviews Drug Discovery, 14(9), 642-662. doi: 10.1038/nrd4663
Kohlhapp, F., & Kaufman, H. (2015). Molecular Pathways: Mechanism of Action for Talimogene Laherparepvec, a New Oncolytic Virus Immunotherapy. Clinical Cancer Research, 22(5), 1048-1054. doi: 10.1158/1078-0432.ccr-15-2667
Tomazin, R., van Schoot, N., Goldsmith, K., Jugovic, P., Sempé, P., Früh, K., & Johnson, D. (1998). Herpes Simplex Virus Type 2 ICP47 Inhibits Human TAP but Not Mouse TAP. Journal Of Virology, 72(3), 2560-2563. doi: 10.1128/jvi.72.3.2560-2563.1998
Oncolytic Virus Therapy. (2021). Retrieved 3 August 2021, from https://www.cancerresearch.org/en-us/immunotherapy/treatment-types/oncolytic-virus-therapy#:~:text=Common%20side%20effects%20associated%20with,pain%2C%20nausea%2C%20and%20fever.
Babu, R. A., Kumar, K. K., Reddy, G. S., & Anuradha, C. (2010). Cancer vaccine: a review. Journal of Orofacial Sciences, 2(3), 77.
Pardoll, D. (1998). Cancer vaccines. Nature Medicine, 4(S5), 525-531. doi: 10.1038/nm0598supp-525
Berd, D., Maguire, H., McCue, P., & Mastrangelo, M. (1990). Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologic results in 64 patients. Journal Of Clinical Oncology, 8(11), 1858-1867. doi: 10.1200/jco.1990.8.11.1858
Pardoll, D. (1995). Paracrine Cytokine Adjuvants in Cancer Immunotherapy. Annual Review Of Immunology, 13(1), 399-415. doi: 10.1146/annurev.iy.13.040195.002151
Banchereau, J., & Steinman, R. (1998). Dendritic cells and the control of immunity. Nature, 392(6673), 245-252. doi: 10.1038/32588
Minev, B. R., McFarland, B. J., Spiess, P. J., Rosenberg, S. A., & Restifo, N. P. (1994). Insertion signal sequence fused to minimal peptides elicits specific CD8+ T-cell responses and prolongs survival of thymoma-bearing mice. Cancer research, 54(15), 4155–4161.
Rousseau, R., Hirschmann-Jax, C., Takahashi, S., & Brenner, M. (2001). CANCER VACCINES. Hematology/Oncology Clinics Of North America, 15(4), 741-773. doi: 10.1016/s0889-8588(05)70245-8
Cancer Vaccines and Their Side Effects. (2021). Retrieved 4 August 2021, from https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/cancer-vaccines.html
Chemotherapy Side Effects. (2021). Retrieved 6 August 2021, from https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/chemotherapy-side-effects.html
Ventola C. L. (2017). Cancer Immunotherapy, Part 3: Challenges and Future Trends. P & T : a peer-reviewed journal for formulary management, 42(8), 514–521.
Zugazagoitia, J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S., & Paz-Ares, L. (2016). Current Challenges in Cancer Treatment. Clinical Therapeutics, 38(7), 1551-1566. doi: 10.1016/j.clinthera.2016.03.026
Schumacher, T., & Schreiber, R. (2015). Neoantigens in cancer immunotherapy. Science, 348(6230), 69-74. doi: 10.1126/science.aaa4971
Pardoll, D. (2015). Cancer and the Immune System: Basic Concepts and Targets for Intervention. Seminars In Oncology, 42(4), 523-538. doi: 10.1053/j.seminoncol.2015.05.003
Yuan, J., Hegde, P., Clynes, R., Foukas, P., Harari, A., & Kleen, T. et al. (2016). Novel technologies and emerging biomarkers for personalized cancer immunotherapy. Journal For Immunotherapy Of Cancer, 4(1). doi: 10.1186/s40425-016-0107-3
Camidge, D., Pao, W., & Sequist, L. (2014). Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nature Reviews Clinical Oncology, 11(8), 473-481. doi: 10.1038/nrclinonc.2014.104
Mutations Linked to Immunotherapy Resistance. (2021). Retrieved 6 August 2021, from https://www.cancer.gov/news-events/cancer-currents-blog/2016/immunotherapy-resistance-melanoma
Tartari, F., Santoni, M., Burattini, L., Mazzanti, P., Onofri, A., & Berardi, R. (2016). Economic sustainability of anti-PD-1 agents nivolumab and pembrolizumab in cancer patients: Recent insights and future challenges. Cancer Treatment Reviews, 48, 20-24. doi: 10.1016/j.ctrv.2016.06.002
Gjerstorff, M., Andersen, M., & Ditzel, H. (2015). Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget, 6(18), 15772-15787. doi: 10.18632/oncotarget.4694
Finn, O., & Beatty, P. (2016). Cancer immunoprevention. Current Opinion In Immunology, 39, 52-58. doi: 10.1016/j.coi.2016.01.002
Patients. (2021). Retrieved 27 August 2021, from https://www.cancerresearch.org/en-us/immunotherapy/stories/patients
Patient stories about immunotherapy. (2021). Retrieved 27 August 2021, from https://www.cancerresearchuk.org/our-research-by-cancer-topic/our-immunotherapy-research/immunotherapy-patient-stories#info-gallery-id-3_slide-1
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Akash Ahmed, Faiza Khondokar, Mahboob Hossain

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.