Novel Technology on Sinthesizing Mg-Zn Biomaterial Using Arc Plasma Sintering
Abstract
In this work the development of new sintering technology using plasma which is generated by DC-Arc for sinthesizing of biomaterial based on MgZn is reported. Magnesium alloy is suited as implant material due to its young modulus which is close to natural bone and bio-compatible with the human body. The MgZn biomaterial is composed of Mg and Zn powder in 94:6 ratio of weight. The mixture was ball milled for four hours, and then isostatic pressed at 570 MPa to form a coin of 1.5 cm in diameter. The coin was subsequently consolidated in the Arc Plasma Sintering (APS) for 30 seconds. For this experiment the APS was operated at 12 Volts and 1 Amps. As comparison, one sample coin was sintered in a conventional furnace at temperature of 350 oC for one hour. The formed MgZn alloys were characterized by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy equipped with an Energy Dispersive X-ray spectroscopy (SEM-EDX). The result showed the sample sintered in APS exhibits high homogeneity with lattice parameter slightly smaller than sample sintered in the furnace. It can be an indication to the higher solubility of Zn in Mg matrix processed in APS. The 6 wt.% Zn addition formed MgZn alloys in the form of solid solution with smaller distance of crystal planes. Synthesizing of MgZn biomaterial can be performed using APS in short time and low energy.
References
Hermawan, Hendra 2012, Biodegradable metals from concept to applications, Springer Briefs in Materials.
Li H, Peng Q, Li X, Li K, Han Z, Fang D 2014, Microstructures, mechanical and cytocompatibility of degradable Mg-Zn based orthopedic biomaterials, Material and Desain, 58:43-51.
Živić F, Grujović N, Manivasagam G, Richard C, Landoulsi J, Petrović V 2014, The potential of magnesium alloys as bioabsorbable/biodegradable implants for biomedical applications, Tribology in Industry 36: 67-73.
Witte F. 2010, The history of Biodegradable magnesium implants: A review, Acta Biomaterialia 6:1680–1692.
Chen Y, Xu Z, Smith C, Sankar J 2014, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomaterialia 10:4561–4573.
Salleh E M, Zuhailawati H, Ramakrishnan S, Gepreel MAH 2015, A statistical prediction of density and hardness of Biodegradable mechanically alloyed Mg–Zn alloy using fractional factorial design, Journal of Alloys and Compounds 644: 476–484.
Xuenan Gu, Yufeng Zheng, Yan Cheng, Shengping Zhong, Tingfei Xi 2009, In vitro corrosion and biocompatibility of binary magnesium alloys, Elsevier, biomaterials, 30,484- 498.
Telma Blanco Matias, Gabriel Hitoshi Asato, Bruno Torquato Ramasco, Walter José Botta, Claudio Shyinti Kiminami, Claudemiro Bolfarini, " Processing and characterization of amorphous magnesium based alloy for application in biomedical implants", elsevier, abm, J Mater Res Technol. 2014, 3(3):203-209.
N. Saheb, A S Hakeem, A Khalil, N Al-Aqeeli, T Laoui 2013, Synthesis and spark plasma sintering of Al-Mg-Zr alloys", Springer, Journal of Central South University of Technology, Press and Springer, J. Cent. South Univ. 20: 7-14.
Emee Marina Salleh, Sivakumar Ramakrishnan, and Zuhailawati Hussain 2015, Synthesis of biodegradable Mg-Zn alloy by mechanical alloying:effect of milling time, Science Direct, Procedia Chemistry 19 (2016 ) 525 – 530 .
Manalu J L, Soegijono B, Indrani D J, Study of Mg-Hydroxyapatite Composite with various
composition of Hydroxyapatite which obtained From Cow Bones in Simulation Body Fluid
(SBF), Asian Journal of Applied Sciences, 2016, (4): 810 - 816
Paliwal M, HoJung I 2014, Microstructural evolution in Mg–Zn alloys during solidification: An experimental and simulation study, Journal of Crystal Growth 394:28–38.
Islam M M, Mustafa A O, Medraj M 2014, Essential magnesium alloy binary phase diagram and
their thermochemical data Journal of Materials : 1-33.
Monshi A, Foroughi M R, Monshi M R 2012, Modified scherrer equation to estimate more accurately nano-crystallite size using XRD World journal of nano science and engineering, 2:154-160.
Downloads
Published
How to Cite
Issue
Section
License
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.