Peirce's Arrow and Satzsystem: A Logical View for the Language-Game

Authors

  • Rafael Duarte Oliveira Venancio Universidade Federal de Uberlândia

Keywords:

C. S. Peirce, Ludwig Wittgenstein, Logic, Language-game

Abstract

This article is an effort to understand how the Peirce's Arrow (Logical NOR), as a logical operation, can act within the concept of Ludwig Wittgenstein's language-game, considering that the language game is a satzsystem, i.e., a system of propositions. To accomplish this task, we will cover four steps: (1) understand the possible relationship of the thought of C. S. Peirce with the founding trio of analytic philosophy, namely Frege-Russell-Wittgenstein, looking for similarities between the logic of Peirce and his students (notably Christine Ladd and O.H. Mitchell) with a New Wittgenstein’s approach, which sees Early Wittgenstein (Tractatus Logico-Philosophicus), Middle Wittgenstein and Last Wittgenstein (Philosophical Investigations) while a coherent way of thinking and not a theoretical break; (2) describe the operation of the Peirce’s Arrow (Logical NOR) as a logical connective; (3) understand the notion of satzsystem (Middle Wittgenstein) and the possibility of applying the concept of language-game (Last Wittgenstein) on it; and (4) understand how the Logical NOR can operate within a satzsystem. The goal here is a search for the logic of the language-game and how the logical ideas of C. S. Peirce can help in this construction. And this construction might be interesting for a better understanding of the analytic philosophy of language.

Author Biography

Rafael Duarte Oliveira Venancio, Universidade Federal de Uberlândia

Rafael Duarte Oliveira Venancio, PhD, is a professor of Journalism at Universidade Federal de Uberlândia

References

(1) BAKER, G. P & HACKER, P. M. S. Wittgenstein: Understanding and Meaning (Vol. 1 of An Analytical Commentary on the Philosophical Investigations – Part I: Essays). Malden: Blackwell, 2005.

(2) BOOLE, G. An investigation of the Laws of Thought on which are founded the mathematical theories of Logic and Probabilities. Mineola: Dover, 1958.

(3) ECO, U. Estetica e teoria dell’informazione. Milão: Bompiani, 1972.

(4) ECO, U. A Estrutura Ausente. São Paulo: Perspectiva, 2007.

(5) FOGELIN, R. J. Wittgenstein (second edition). London: Routledge, 1995.

(6) HAACK, S. Filosofia das lógicas. São Paulo: Unesp, 2002.

(7) HINTIKKA, J. Lingua Universalis vs. Calculus Ratiocinator. Dordrecht: Kluwer, 1997.

(8) JEVONS, W. S. The Principles of Science: A treatise on Logic and Scientific Method (American Edition – bound in one volume). N.Y.: Macmillan, 1874.

(9) LADD, C. “On the Algebra of Logicâ€. In: PEIRCE, C. S. Studies in Logic (by members of the Johns Hopkins University). Boston: Little, Brown and Co., 1883.

(10) LANDINI, G. Russell. London: Routledge, 2011.

(11) MITCHELL, O. H. “On a New Algebra of Logicâ€. In: PEIRCE, C. S. Studies in Logic (by members of the Johns Hopkins University). Boston: Little, Brown and Co., 1883.

(12) NICOD, J. G. P. “A Reduction in the Number of Primitive Propositions of Logicâ€. Proceedings of the Cambridge Philosophical Society. vol. 19., 1917-20.

(13) NÖTH, W. Panorama da Semiótica – de Platão a Peirce. São Paulo: Annablume, 1995.

(14) PEIRCE, C. S. Collected Papers of Charles Sanders Peirce. Cambridge: HUP, 1958.

(15) QUINE, W. V. Mathematical Logic (Revised Edition). Cambridge: HUP, 1981.

(16) SHANKER, S. G. Wittgenstein and the Turning-Point in the Philosophy of Mathematics. Albany: SUNY, 1987.

(17) SHANNON, C. E. “A Mathematical Theory of Comunicationâ€. The Bell System Technical Journal. v. XXVII – July and October. Murray Hill: Bell Labs, 1948.

(18) SHEFFER, H. M. “A set of five independent postulates for Boolean algebras, with application to logical constantsâ€. Transactions of the American Mathematical Society. vol.14, 1913.

(19) SOWA, J. F. “The Role of Logic and Ontology in Language and Reasoning†(preprint article of chapter 11 of POLI, R. & SEIBT, J. (org.). Theory and Applications of Ontology. Berlin, Springer, 2010), 2010. Available in: http://www.jfsowa.com/pubs/rolelog.pdf.

(20) WAISMANN, F. Ludwig Wittgenstein and the Vienna Circle. Oxford: Basil Blackwell, 1979.

(21) WHITEHEAD, A. N. & RUSSELL, B. Principia Mathematica. Breinigsville: Merchant, 2009.

(22) WITTGENSTEIN, L. Fichas (Zettel). Lisboa: Edições 70, 1989.

(23) WITTGENSTEIN, L. Lectures on the Foundations of Mathematics: Cambridge 1939 (editado por Cora Diamond). Chicago: UCP, 1989b.

(24) WITTGENSTEIN, L. Gramática Filosófica. São Paulo: Loyola, 2003.

(25) WITTGENSTEIN, L. Observações Filosóficas. São Paulo: Loyola, 2005.

(26) WITTGENSTEIN, L. “Tractatus Logico-Philosophicus. In: Major Works. N.Y.: Harper, 2009.

(27) WITTGENSTEIN, L. “Philosophical Investigationsâ€. London: Blackwell, 2011.

(28) WOLF, M. “Teorias da Comunicaçãoâ€. Lisboa: Presença, 1992.

Downloads

Published

2013-12-14

How to Cite

Venancio, R. D. O. (2013). Peirce’s Arrow and Satzsystem: A Logical View for the Language-Game. Asian Journal of Humanities and Social Studies, 1(5). Retrieved from https://ajouronline.com/index.php/AJHSS/article/view/660