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_______________________________________________________________________________________________ 

ABSTRACT‒ Analytical solutions for wave propagation in a general inhomogeneous optical fiber profile are built 

using serial expansions about regular points of differential equations for radial variation of field components, called 

as Frobenius’ and Taylor’s, whose coefficients are evaluated recursively. Using both types of series expansion, a 

general and fast convergent algorithm for computing modal characteristics is presented: the Frobenius-Taylor 

Method (FTM), together with a set of alternative functions to the second-kind Bessel ones (used in the cladding), 

closely related but numerically more stables. The complete algorithm is presented and can be applied to both high and 

low values of the index difference, showing a fast convergence for frequencies just over, very near and far from 

cutoff.  
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1. INTRODUCTION 

      The design of an optical fiber profile will greatly benefit from the use of analytical solutions for field components and 

a correspondent algorithm to compute modal characteristics. In fact, such an algorithm is free of spurious solutions and 

allows fast evaluation of waveguide dispersion characteristics. Analytical solutions can be constructed using Frobenius-
type series expansions, first proposed by Kirchhoff [1] under a slow index variation approach. This method is referenced 

in classical books and is mainly applied to the α-power profiles [2] but, for more general profiles, the series convergence 

was reported to be very poor. However, using both Frobenius and Taylor’s series expansions, a general fast convergent 

algorithm can be constructed, named as Frobenius-Taylor Method (FTM). Frobenius solutions in the core and Taylor 

solutions in an intermediate layer of the fiber structure are first presented in [3] and a set of Frobenius’ solutions is 

defined in the cladding. Those solutions are related to the modified Bessel functions of second kind but can be used very 

near and far from cutoff, remaining stable and fast convergent.  

      The complete algorithm is included here and it is important to point out that neither a slow variation of the refractive 

index or small values for the index difference are imposed, which allows the algorithm’s application to general profiles. 

In an example where a fast profile variation is considered, cutoff values and modal solutions for both small and high 

values of index differences are presented.  

2. GENERAL 

      The fiber is composed by k coaxial isotropic layers 2)( k , where a general layer j is defined by the relative 

permittivity radial function εj(r) and the outer medium k extends to infinity and is homogeneous: the cladding, εk(r)= εk. 

The fiber is inserted in a cylindrical coordinate system, where a normalised radial variable x is used instead of r, where 

x= r/a and a is a reference length. All layers do have μ=μ0, are considered without losses, and the time excitation is 
exp(jωt). 
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Fig. 1: The fiber structure in a cylindrical coordinate system 

 

      Modal solutions will be built using series development in for solving the radial x-variation of the radial and azimuthal 

magnetic field in each medium of the Fig.1. Those equations are [3]: 

(2.1.a) 
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      In (2.1) β = kz / k0, k0 is the free space wave number and m is the azimuthal order – related to the well-known 

azymuthal field-variation with sin(m) or cos(m). For the differential equations (2.1), the points x = 0  and x = ∞ are 
singular, the first a regular one and the second irregular, and any other point is regular [4]. The solutions will be written 

as series expansions about a regular point x0, of the Frobenius’ type if this point is the singular one, and of the Taylor’s 

type otherwise [4]. In those expansions the series’ coefficients are built using the Taylor´s coefficients of the functions 

s(x) and g(x) in (2.1), about the point 0x . Starting with the Taylor´s coefficients of a general function ε(x), 
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      Using from now on  matricial notations, the functions s(x) and g(x) in (2.1.b) are defined by 

(2.2.c) 
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(1) inner medium, = 1(x) 

(j) intermediate medium = j(x) 

(k) outer medium = k 
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and the field components in (2.1) are built using series expansions about x0, with the form 

(2.3) 
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where   is a constant, [4].  

 

3. FROBENIUS’ SOLUTIONS IN THE INNER MEDIUM 

   Choosing x0 = 0, the pair of functions Hr(x) and H (x) in (2.3) becomes:  
(3.1) 
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where one of the zero-order coefficient is the integration constant. Applying (3.1) to the differential equations (2.1), 

together with the series expansions of the functions s(x) and g(x) about x0 = 0 in (2.3), and making zero the coefficient of 

xn in the resultant series [4], the following system is obtained: 
(3.2) 

  0
G(b)S(b)

S(a)

a

b
2m

b

a
1)(mn)(γ

n

n

n

n22 



























  

                                                     























i

i
2n

0i

i2n
b

a
s

S(b)

S(a)
 

 ii

1n

0i

i1n amb1)i(γgG(b) 




  

Solving the system (3.2) in order to calculate the coefficients an and bn, it is obtained a recursive formula: 
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where  nΔ , is the determinant in (3.2). Making   00nΔ ,  four different values of γ are obtained if m ≠ 0 and 

only two if m = 0, namely: 
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      As the inner medium contains the point x = 0 (see Fig.1), only the solutions associated to no negatives values of  γ 

can be considered, in order to avoid infinitive fields in this point. So, the differential equations (2.1) in the inner medium 
(1) have Frobenius’ solutions [3] with the form: 

(3.5.a) 
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where A1, B1 are the integration constants in (3.5). In order to define and calculate all the intervening coefficients, the 
following algorithm is used: 
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4. TAYLOR’S SOLUTIONS IN AN INTERMEDIATE MEDIUM (J) 

      If x0 > 0 it is possible to probe that γ = 0 in the pair of functions in (2.3), [4]. So, the Taylor’s solutions are given by: 
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      Making 00 x)x(xx   in the differential equations (2.1), with )xs(xs(x) 0 and )xg(xg(x) 0 , 

applying to those equations the pair of functions in (4.1) and making zero the coefficient of 
n

0 )x(x   in the series 

expansions, it results [3]: 
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 The Taylor’s solutions in an intermediate medium will have the form: 

(4.3.a) 
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where the Aj, Bj are the integrations constants and the functions )x-(xh),x-(xh 00r   are defined as follows 

(4.3.b) 
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      Now, all the intervening coefficients in (4.3) are defined and calculated using the following algorithm [3]:  
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5. FROBENIUS’ SOLUTIONS IN THE OUTER MEDIUM (K) 

      In the outer medium, homogeneous (the cladding), it is well-known that finite-valued solutions at x = ∞ must be used, 

named as “proper solutions”, related with the Frobenius’ series expansions in (3.1) with no positive values of  in (3.4). 

Those solutions for Hr (x) and H (x) will be defined as follows: 
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      In (5.1) Ak and Bk are the integration constants and the functions (x)h(x),h ppr   are the proper solutions (note the 

lower index p, just from “proper”). Those functions has the same form as in (3.1) on the cutoff condition (β2= εk), as all 

the n-order coefficients are zero-valued except for n = 0 (in fact sk = gk =0 in (3.3), and so an = bn =0 if n>0). In the 

propagation condition (β2>εk), the proper solutions are built as in [4], and series expansions with coefficients )b',(a' nn  
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      Now, for n > 0 all the intervening coefficients in (5.2.c) are calculated using 

(5.3) 
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and the proper solutions, for each value of  in (5.2), are evaluated as follows: 

(5.4) 
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      It is possible to verify that the proper functions in (5.2) are proportional to the modified Bessel functions of second 

kind K [5], as follows: 
(5.5) 
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6. MODAL EQUATION 

      The modal equation is obtained making zero the system determinant obtained from the boundary conditions at points 

jx  in Fig.1, with 1kj1  . The boundary conditions will be the continuity of (x)E(x),H(x),H(x),H zzr  . 

From the Maxwell equations, the x-variation of the longitudinal components Hz(x) and Ez(x) are given by [3]: 
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(6.1) 
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where  1200Z  is the free-space wave resistance. 

      As the transversal field components (x)H,(x)H r   are linear combinations of the elementary functions 

(x)h,(x)h r  early defined, the longitudinal field components in (6.1) will be also linear combinations of the 

elementary functions (x)e,(x)h zz , defined as follows: 

(6.2) 
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(this both for Frobenius’ and Taylor’s solutions, those with argument “x-x0”) 

 

      Imposing the continuity of the zzr EHHH ,,,   field components in each boundary points in the Fig.1, the 

following system of equations is obtained: 

(6.3) 

    0AM
T
  

where   TA is the integrations constants’ column matrix, and  M is a square matrix. The modal equation is obtained 

imposing  

(6.4) 

D = det [M] = 0 

 

and a simple criterium for hybrid modes identification (HE or EH if m > 0) can be used [3], just comparing the absolute 

value of the integration constants in the outer medium (k), as follows: 

(6.5) 

HE modes: 
)()( 4

k

3

k AA        EH modes: 
)()( 4

k

3

k AA   

 

7. AN EXAMPLE 

 

      It follows an example of index profile fiber (perhaps not very interesting for practical applications but suitable for 

exemplify the algorithm application), entering with fiber and modal parameters (defined in the point 7.2). 

 

7.1. Profile definition 

 
      Consider an index profile for witch three media are defined, see Fig.2: 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

      

      The Taylor’s coefficients εi of he function )x( , for each one of the considered media in the Fig.2, are given by: 

inner medium(1), 1xx0  : 

 

  1mMm1 x/x)ε(εε(x)ε    

 

intermediate medium (2), 21 xxx  : 

 

)x(x/)x(x)ε(εε(x)ε 212mMm2   

 

outer medium (3), :2xx  k3 (x)   

 

 

Figure 2:  The fiber profile 

x1 = 0.5  

x2 =  1  
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(7.1) 
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 outer medium (k):   1i0ε,εε ik0   

 

7.2. Profile and modal parameters 

 

      Defining the profile parameters tΔandΔ  as follows: 

(7.2.a) 

M

mM
t

M

kM

ε

εε
Δ

ε

εε
Δ





  

and considering also the modal parameters bV , : 

(7.2.b) 
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the s and g Taylor’s coefficients, according to (2.2), will be given by: 

  (7.3) 
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      Modal solutions are evaluated using both high and small values for the profile parameters in (7.2.a), as follows: 

 

(7.4) 

( t  20% 10%, )   and   ( t  02% 01%. , . ) 

 

7.3 Numerical criteria 

 

      For computation proposes, it is considered that: 

 

 the solution (V, b), in (7.2.b), is found when the determinant value D of M in the modal equation (6.3) obey 

to 
610D  . Note that M is a 44  matrix for transversal TE and TM modes, and a 88  matrix for 

hybrid HE and EH modes. 

 the convergence of a series expansion is obtained when 
8

nn 10ST / , where Tn is the nth term and 
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

n

i
in TS

0

.  
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7.4 Results 

 

      The cutoff value (b = 0) of the normalised frequency V are presented in Table 1, for the first 20 modes, and Fig.3 

shows a plot of modal solutions. Now, in Fig.3, it is interesting to note that: 

 

1. For very small index differences, the set of modes (HEL+1, EHL-1,n) and (TE0n , TM0n and HE2n) have the same 
cutoff value (see Table 1) and coincident modal lines (see Fig.3). In fact, they are degenerated and can be 

considered as the LPLn modes.  

2. The TE01 and LP11 lines are the same for both groups of Δ and Δt values, and this will occur for all the TE0n and 

LP1n modes. In fact, according to (6.2) and (2.1.a) with m = 0, the field components for TE modes only depends 

on the function s(x), and so on the value of  /t  = 2 for both of the considered cases. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. CONCLUSIONS 

 

      Using Frobenius and Taylor’s series expansions as solutions of radial wave equations for field components, a fast 

convergent algorithm is presented for calculating modal characteristics. Important aspects are the possible use in a large 

frequency range, and the inclusion of fast radial variation of the refractive index. A set of modal solution points can be 

easily obtained for any propagation mode, allowing the evaluation and graphical plots of another parameters of the fiber, 

just as in [6], [7] and [8]. It is important to point out that FTM is full explained in this paper and can be applied in this 
domain of inhomogeneous fibers without searching another reference.   

 

 

 

 Δt = 20% 

Δ = 10% 

Δt = 0.2% 

Δ = 0.1% 

HE11 1.296 0.122 

TE01 5.154 5.154 

HE21 5.256 5.155 

TM01 5.372 5.156 

EH11 7.348 7.277 

HE31 7.371 7.277 

EH21 9.355 9.310 

HE41 9.402 9.310 

EH31 11.351 11.325 

HE51 11.416 11.326 

EH41 13.348 13.336 

HE61 13.427 13.337 

HE12 14.089 14.093 

HE22 14.764 14.779 

TE02 14.779 14.779 

TM02 14.806 14.779 

EH51 15.347 15.346 

HE71 15.437 15.347 

HE32 16.155 16.167 

EH12 16.184 16.167 

Table 1:  V cutoff values 

 

Figure 3: Modal lines for high and very small step index differences. 
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