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ABSTRACT---- In this study, we develop a concise and efficient formula for determining the order and error
constants of fourth-order linear multistep methods used in the numerical solution of ordinary differential
equations. Traditional approaches to computing these parameters often involve tedious algebraic
manipulations, which can be time-consuming and error prone. This new approach provides a streamlined and
systematic method that simplifies the analysis while ensuring accuracy and reliability. By leveraging this new
approach, researchers can more efficiently assess the accuracy and stability of fourth-order linear multistep method
schemes.
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1. INTRODUCTION

Numerical analysis is a fundamental discipline within mathematics and computer science that focuses on the
development, analysis and implementation of algorithms for approximating solutions of Ordinary Differential
Equations (ODEs) and other complex mathematical problems. The numerical solution of ODEs plays a crucial role in
various scientific and engineering applications where analytic solutions are often difficult or impossible to obtain.

Over the years, researchers have made substantial progress in designing and analyzing numerical algorithms for
solving ODEs, particularly low order methods (orders< 3). Among the most widely used classes of numerical methods
are Linear Multistep Methods (LMMs), which leverage multiple previous steps to advance the solution, thereby
improving efficiency and accuracy compared to single-step methods like the Runge-Kutta schemes. LMMs are
particularly advantageous in long-term integrations due to their ability to reduce computational cost while maintaining
accuracy.

A conventional approach for determining the order and error constants of numerical schemes is the Taylor series
expansion. While this method is theoretically sound and widely adopted, it becomes increasingly cumbersome as the
order of the numerical scheme increases. The expansion process generates large, intricate expansions, making manual
computation tedious and computationally expensive. The challenge is further compounded when dealing with higher-
order LMMs, where the complexity of algebraic manipulations grows exponentially

The analysis of numerical methods for determining the order and error constants of LMMs has been extensively studied
in the literature. Early works, such as those of [5], focused on methods of order < 2, providing foundational techniques
for analyzing numerical accuracy and stability. Later advancements by [3] extended the analysis to third-order LMMs,
paving the way for higher-order methods. Despite these contributions, there remains a pressing need for more efficient
and systematic approaches to analyze higher-order schemes, particularly fourth-order LMMs. The development of
streamlined techniques is crucial to ensuring that numerical algorithm’s achieve the desired accuracy and stability while
minimizing computational effort.
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In this study, we propose a concise and efficient formula for determining the order and error constants of fourth-order
LMMs used in solving ODEs. Our approach seeks to simplify the analysis while maintaining reliability, thereby
enabling researchers to assess the accuracy stability of numerical schemes with greater ease. By leveraging this new
approach, we aim to address the computational challenges associated with higher-order numerical methods and
contribute to the advancement of efficient ODE-solving techniques.

2. METHODOLOGY

This section presents a review of previous analyses on determining the order and error constant of LMMs for first-,
second- and third-order ODE:s.

Consider an arbitrary function y(x) that is continuously differentiable at a close interval [a,b]. [S] conducted a
comprehensive analysis of the order and error constants of first- and second-order LMMs as follows:

Given the first-order LMM of the form
k k

D @@ sy =h Y By =012 .k ©)

Jj=0 j=0
by associating the linear difference operator
k

Ly Gl = ) ey Ce + ) = Wy Ge + jA)] = 0 @)

Jj=0
Expanding both y(x + ji) and y'(x + jh) using the Taylor series about x and collecting terms gives
Ly (x):hl = Coy(x) + Cihy () + - + CghTy?(x) (3)

where C; are constants, for i = 1,2,...q. A simple calculation in terms of «; , §; yields the following formula for the
constants C;

C0=Ol0+a1+a’2...+ak

C,=(a;+2a,+3a;5...+kay) — (Bo+B1+ B+ -+ Br)

Cq =
%(a1 +29a, + 3%z ..+ kay) — ﬁ(ﬁl + 429718, + 39718, L+ kT1B,) 4)
where ¢q = 2,3, ... This method can be categorically said to have order P if Cy=C, =C, =--=Cp =0, but

Cps1 # 0. Cpyq is the error constant and the error Cpy,h” T yP+1(x,) is the principal local truncated error at the point
().
Also, Given the second-order LMM of the form

k Kk
> @ nes = 1Y By j =012 ..k ©
j=0 Jj=0
By associating the linear difference operator
k
LGkl = ) [ayCe +jh) = BBy + )] = 0 (6)
j=0

A simple calculation yields the following formula for the constant C;

C0:a0+a1+a2...+ak
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Ci=a;+2a, +3a3 ...+ kay,

1
C, = z(oz1 +2%2a, + 3%a3 ..+ k2a,) — (Bo + B+ By + -+ Bi)

C, =
q
1 1 - _ _
a(@ 200, + 3%y .+ k) — s (B + 421 2By +3972B5 .+ kT2 By) (7)
For q = 3,4, ... This implies that the method is said to have order P if C, =C, =C, =+ =Cpyq =0,but Cpyp #0.

Cps, is the error constant and the error Cp,,h"?yP+2(x,,) is the principal local truncated error at the point (x,,).

The order and error constants for the third-order LMM was obtained by [3] as follow.

Given a LMM of the form

k k
> @ nss =B B0y j=012 ..k @®
=0 =0

By associating the linear difference operator
k
Lyl = ) [agyCe + ) = KBy (x + )] = 0 ©
j=0
A simple calculation yields the following formula for the constant C;
Co=ap+a,+a,..+a;
C,=a;+2a,+3az ..+ kay,

CZ = %(al + 220(2 + 320!3 .t kzak)

1
G = (a1 + 2%, + 3%az ..+ kPay) = (Bo + Br + Bz + -+ Br)

C:

q
i(al + 2%, + 3%5 ...+ klay,) —

1 - - -
@3 (B ++2973B, + 397385 ..+ KI73By) (10)
For g = 4,5, ... This implies that the method is said to have order P if Cy = C; = C, =+ = Cpy, = 0,but Cp,3 # 0.

Cp.s is the error constant and the error Cp,3h" >yP*3(x,) is the principal local truncated error at the point (x;,).
3. PROPOSED TECHNIQUE
Consider a fourth-order LMM of the form

k k
D @@Ynes =5 B s j=012,..k an
j=0 j=0
with an associating linear difference operator of
k
LGl = ) [ayCe+ j) = KBy (e + ji)] = 0 (12)
j=0

Expanding both y(x + jh) and y'(x + jh) using the Taylor series about x and collecting terms gives
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Lly(x):h] = Coy(x) + Cihy' (x) + -+ Coh7y9(x) = 0 , q=>56.. (13)
By collecting the corresponding terms, we obtain the following coefficients:

Cho=ag+as+ay..+a

Ci=a;+2a, +3a3 ...+ kay,

C, = %(0{1 + 22a, + 3%a; ...+ k%ay)

C; = ;(al + 28%a, + 33%a;z ..+ k3ay)

1
Cp = (@ + 2%, + 3%z .+ k) = (B + By + Bz + -+ Br)

Cs = = (ay + 25, + 3505 ..+ kSa,) — (By + 2By + 3B, + -+ kBy)

1 1
CG = a(al + 26a2 + 360!3 e + k6ak) - ;(ﬁl + Zzﬁl + 32B2 + A + kzﬁk)

1 1
C7 = ;(al + 27a2 + 370!3 .t k7ak) - ;(ﬁl + Zsﬁl + 33B2 + -+ k3ﬁk)

1 1
Co =g (an + 2%, + 3%az ...+ kPay) — - (By + 2%y + 3B, + -+ + k*By)

1 1 — - -
Cq= ;(al + 2%k, + 3% ..+ klay,) — m(ﬁl + 42974, + 39745 .+ kIR (14)

This simply implies that the method is said to have order P if Co =C, =C, =+ =Cp,3 =0,but Cpyy #0. Cpyy
is the error constant and the error Cp,,h” *yP+*(x,,) is the principal local truncated error at the point (x,,).

The formula (14) can be expressed in a more concise form as

_ 1
C=5 ,
=1
k k
1 4
C4=Z<Z] aj>_ Zﬁj
= =0
k k
1 . .
C5=§<ZJ “j)‘ Z]ﬁj
= =
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1< 1(x
C6 =a<2j6aj>_i Z]Zﬁ]>
j=1 j=1
1< 1(x
&= ﬁ(Zf”‘f) iEl Zf“ﬂf)
j=1 j=1
1< 1(x
CS:Q(Z].BQJ'>_I Zj4ﬁj
j=1 j=1
1< 1 [x
Cq = quaf _m Zj(q_4)ﬁj q=56.. (15)
q: j=1 q "\Jj=1

4. VALIDATION OF THE PROPOSED TECHNIQUE

To validate the accuracy of the proposed technique, selected fourth-order LMM schemes from various authors [6], [2],
[4], [7], [1] and [8] have been utilized for confirmation. They are respectively listed as
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To further authenticate the proposed technique, the compact equation (15) is applied to the discrete scheme presented in
(a). The resulting expressions are given as follows:

3 29 181 1
—+Z+———|=0
2 12 96 48

181

M+E2E)+2 ) -] =0
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=21 +E2@w -2 -2©)7) -1 [ZW? +§(3)3 +%(5)3 -~ =0

=1 843548 218 _3618) _ 13 )4 4 44 4 — 257
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This analysis for this discrete scheme demonstrates that C0 =(; = C2 == C7 = 0, while Cg # 0. Consequently, the

. . . 257
method is of order 4 as Cp,, # 0 with an associated error constant of T

Similarly, applying the same assessment to (b), (c), (d) (e) and () conﬁrms that the methods achieve orders 4, 4, 6, 6, 9
-31  -1877
720’ 55490641920 ’ 3024’ 3246995275776 6227020800

5. DISCUSSION OF RESULTS.

The validations of the proposed technique in (15) were carried out with six selected fourth-order LMMs from the literature.
The verification process involved computing the coefficients C, to Cg for problems (a, b and ¢), C, to C;, for problems (d
and e) and C, to C;; for problem (f) to ensure compliance with the required theoretical constraints that define the accuracy
and stability of numerical schemes. The results indicate that the coefficients C, to C, for (a, b and ¢), C, to Cy for (d and
e) and C, to C, for (f) all equated to zero, which is a strong affirmation of the method’s correctness and consistency across
varying accuracy levels. This outcome demonstrates that the proposed approach successfully captures the fundamental
properties required for fourth-order numerical schemes while eliminating the cumbersome algebraic manipulations associated
with traditional Taylor series expansions.

with corresponding error constants respectively.

A key take-away from these results is the efficiency and reliability of the new method in assessing the order and error
constants of fourth-order LMMs. By offering a streamlined approach, this method significantly reduces the computational
burden typically involved in the analysis of numerical methods, thereby making it more accessible for researchers and
practitioners working in the field of numerical analysis.

Furthermore, the ability of this technique to consistently validate multiple fourth-order LMMs underscores its general
applicability. This suggests that it could be extended to even higher-order > 5, potentially simplifying the design and analysis
of numerical algorithms used in solving ODEs. The results of this study affirm that the newly developed concise method
exhibits more efficient, accurate, and computationally feasible approach for determining the order and error constants of
fourth-order LMMs. The findings contribute to advancing numerical analysis by offering a powerful tool that simplifies
method validation, reduced implementation complexity, thereby enhancing its accuracy, efficiency and stability.
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