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ABSTRACT---- In this study, we develop a concise and efficient formula for determining the order and error 
constants of fourth-order linear multistep methods used in the numerical solution of ordinary differential 
equations. Traditional approaches to computing these parameters often involve tedious algebraic 
manipulations, which can be time-consuming and error prone. This new approach provides a streamlined and 
systematic method that simplifies the analysis while ensuring accuracy and reliability. By leveraging this new 
approach, researchers can more efficiently assess the accuracy and stability of fourth-order linear multistep method 
schemes. 
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1. INTRODUCTION

Numerical analysis is a fundamental discipline within mathematics and computer science that focuses on the 
development, analysis and implementation of algorithms for approximating solutions of Ordinary Differential 
Equations (ODEs) and other complex mathematical problems. The numerical solution of ODEs plays a crucial role in 
various scientific and engineering applications where analytic solutions are often difficult or impossible to obtain. 

Over the years, researchers have made substantial progress in designing and analyzing numerical algorithms for 
solving ODEs, particularly low order methods (orders≤ 3). Among the most widely used classes of numerical methods 
are Linear Multistep Methods (LMMs), which leverage multiple previous steps to advance the solution, thereby 
improving efficiency and accuracy compared to single-step methods like the Runge-Kutta schemes. LMMs are 
particularly advantageous in long-term integrations due to their ability to reduce computational cost while maintaining 
accuracy. 

 A conventional approach for determining the order and error constants of numerical schemes is the Taylor series 
expansion. While this method is theoretically sound and widely adopted, it becomes increasingly cumbersome as the 
order of the numerical scheme increases. The expansion process generates large, intricate expansions, making manual 
computation tedious and computationally expensive. The challenge is further compounded when dealing with higher-
order LMMs, where the complexity of algebraic manipulations grows exponentially 

The analysis of numerical methods for determining the order and error constants of LMMs has been extensively studied 
in the literature. Early works, such as those of [5], focused on methods of order ≤ 2, providing foundational techniques 
for analyzing numerical accuracy and stability. Later advancements by [3] extended the analysis to third-order LMMs, 
paving the way for higher-order methods. Despite these contributions, there remains a pressing need for more efficient 
and systematic approaches to analyze higher-order schemes, particularly fourth-order LMMs. The development of 
streamlined techniques is crucial to ensuring that numerical algorithm’s achieve the desired accuracy and stability while 
minimizing computational effort. 
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In this study, we propose a concise and efficient formula for determining the order and error constants of fourth-order 
LMMs used in solving ODEs. Our approach seeks to simplify the analysis while maintaining reliability, thereby 
enabling researchers to assess the accuracy stability of numerical schemes with greater ease. By leveraging this new 
approach, we aim to address the computational challenges associated with higher-order numerical methods and 
contribute to the advancement of efficient ODE-solving techniques. 

2. METHODOLOGY

This section presents a review of previous analyses on determining the order and error constant of LMMs for first-, 
second- and third-order ODEs. 

Consider an arbitrary function �(�)  that is continuously differentiable at a close interval  [�, �]. [5] conducted a 
comprehensive analysis of the order and error constants of first- and second-order LMMs as follows: 

Given the first-order LMM of the form 

� ��(�)���� = ℎ � ��(�)����

�

���

�

���

 � = 0,1,2, … �  (1) 

by associating the linear difference operator 

�[�(�): ℎ] = �����(� + �ℎ) − ℎ���′(� + �ℎ)� = 0

�

���

  (2) 

Expanding both  �(� + �ℎ)  and  �′(� + �ℎ) using the Taylor series about  �  and collecting terms gives 

�[�(�): ℎ] = ���(�) + ��ℎ�′(�) + ⋯ + ��ℎ���(�)  (3) 

where  ��   are constants, for   � = 1,2, … �. A simple calculation in terms of  �� ,  ��  yields the following formula for the 

constants  ��  

�� = �� + �� + �� … + �� 

�� = (�� + 2�� + 3�� … + ���) − (�� + �� + �� + ⋯ + ��) 

 ⋮ 

�� =
�

�!
(�� + 2��� + 3��� … + ����) −

�

(���)!
(�� + +2����� + 3����� … + ������)  (4) 

where  � = 2,3, …  This method can be categorically said to have order  �   if  �� = �� = �� = ⋯ = �� = 0, but  

���� ≠ 0.  ����  is the error constant and the error  ����ℎ�������(��)  is the principal local truncated error at the point  
(��). 

Also, Given the second-order LMM of the form 

� ��(�)���� = ℎ� � ��(�)����

�

���

�

���

 � = 0,1,2, … �  (5) 

By associating the linear difference operator 

�[�(�): ℎ] = �����(� + �ℎ) − ℎ����′′(� + �ℎ)� = 0

�

���

  (6)  

A simple calculation yields the following formula for the constant  ��  

�� = �� + �� + �� … + �� 
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�� = �� + 2�� + 3�� … + ���  

�� =
�

�!
(�� + 2��� + 3��� … + ����) − (�� + �� + �� + ⋯ + ��)  

⋮  

�� =
�

�!
(�� + 2��� + 3��� … + ����) −

�

(���)!
(�� + +2����� + 3����� … + ������)                                                               (7)   

For  � = 3,4, … This implies that the method is said to have order  �  if  �� = �� = �� = ⋯ = ���� = 0, but  ���� ≠ 0.  

����  is the error constant and the error  ����ℎ�������(��)  is the principal local truncated error at the point  (��). 

The order and error constants for the third-order LMM was obtained by [3] as follow. 

Given a LMM of the form 

� ��(�)���� = ℎ� � ��(�)����

�

���

�

���

                                              � = 0,1,2, … �                                                                              (8) 

By associating the linear difference operator  

�[�(�): ℎ] = �����(� + �ℎ) − ℎ����′′′(� + �ℎ)� = 0

�

���

                                                                                                              (9)  

A simple calculation yields the following formula for the constant  ��  

�� = �� + �� + �� … + ��  

�� = �� + 2�� + 3�� … + ���  

�� =
�

�!
(�� + 2��� + 3��� … + ����)  

�� =
�

�!
(�� + 2��� + 3��� … + ����) − (�� + �� + �� + ⋯ + ��)  

⋮  

�� =
�

�!
(�� + 2��� + 3��� … + ����) −
�

(���)!
(�� + +2����� + 3����� … + ������)                                                             (10)   

For  � = 4,5, … This implies that the method is said to have order  �  if  �� = �� = �� = ⋯ = ���� = 0, but  ���� ≠ 0.  

����  is the error constant and the error  ����ℎ�������(��)  is the principal local truncated error at the point  (��). 

3.  PROPOSED TECHNIQUE 

Consider a fourth-order LMM of the form  

� ��(�)���� = ℎ� � ��(�)����

�

���

�

���

                                              � = 0,1,2, … �                                                                           (11) 

with an associating linear difference operator of 

�[�(�): ℎ] = �����(� + �ℎ) − ℎ������(� + �ℎ)� = 0

�

���

                                                                                                           (12)  

Expanding both  �(� + �ℎ)  and  ���(� + �ℎ) using the Taylor series about  �  and collecting terms gives 
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�[�(�): ℎ] = ���(�) + ��ℎ��(�) + ⋯ + ��ℎ���(�) = 0         ,         � = 5,6 …                                                                   (13) 

By collecting the corresponding terms, we obtain the following coefficients:  

�� = �� + �� + �� … + ��  

�� = �� + 2�� + 3�� … + ���  

�� =
�

�!
(�� + 2��� + 3��� … + ����)  

�� =
�

�!
(�� + 2��� + 3��� … + ����)  

�� =
�

�!
(�� + 2��� + 3��� … + ����) − (�� + �� + �� + ⋯ + ��)  

�� =
�

�!
(�� + 2��� + 3��� … + ����) − (�� + 2�� + 3�� + ⋯ + ���)  

�� =
�

�!
(�� + 2��� + 3��� … + ����) −

�

�!
(�� + 2��� + 3��� + ⋯ + ����)  

�� =
�

�!
(�� + 2��� + 3��� … + ����) −

�

�!
(�� + 2��� + 3��� + ⋯ + ����)  

�� =
�

�!
(�� + 2��� + 3��� … + ����) −

�

�!
(�� + 2��� + 3��� + ⋯ + ����)  

⋮  

�� =
�

�!
(�� + 2��� + 3��� … + ����) −

�

(���)!
(�� + +2����� + 3����� … + ������)                                                  (14)  

This simply implies that the method is said to have order  �  if  �� = �� = �� = ⋯ = ���� = 0, but  ���� ≠ 0.  ����  

is the error constant and the error  ����ℎ�������(��)  is the principal local truncated error at the point  (��). 

The formula  (14)  can be expressed in a more concise form as 

�� = � ��

�

���

                                                                                                                                                                                                                

�� = � ���

�

���

                                                                                                                                                                                                              

�� =
1

2!
�� ����

�

���

�                                                                                                                                                                                                 

�� =
1

3!
�� ����

�

���

�                                                                                                                                                                                                 

�� =
1

4!
�� ����

�

���

� − �� ��

�

���

�                                                                                                                                                                           

�� =
1

5!
�� ����

�

���

� − �� ���

�

���

�                                                                                                                                                                         
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�� =
1

6!
�� ����

�

���

� −
1

2!
�� ����

�

���

�                                                                                                                                                                   

�� =
1

7!
�� ����

�

���

� −
1

3!
�� ����

�

���

�                                                                                                                                                                   

�� =
1

8!
�� ����

�

���

� −
1

4!
�� ����

�

���

�                                                                                                                                                                   

⋮  

�� =
1

�!
�� ����

�

���

� −
1

(� − 4)!
�� �(���)��

�

���

�                                         � = 5,6 …                                                                   (15) 

4.  VALIDATION OF THE PROPOSED TECHNIQUE 

To validate the accuracy of the proposed technique, selected fourth-order LMM schemes from various authors [6], [2], 
[4], [7], [1] and [8] have been utilized for confirmation. They are respectively listed as  

(a) ���� +
��

��
���� −

��

��
���� −

��

��
���� +

�

��
�� −

�

��
ℎ����� −

��

��
ℎ����� −

���

��
ℎ����� +

�

��
ℎ����� 

(b) ���� − 4���� + 6���� − 4���� + ���� −
��

��
(���� + 22���� + ����) 

(c) �
��

�

�

− �� −
�

�
ℎ��

′ −
�

��
ℎ���

′′ −
�

���
ℎ���

′′′ −
�

�����
ℎ��

��
�

�

+
��

�������
ℎ��

��
�

�

−
�

������
ℎ����� 

(d) ���� + �� − 4���� + 6���� − 4���� +
�

���
ℎ��� −

���

���
ℎ����� −

���

���
ℎ����� −

���

���
ℎ����� + ℎ����� 

(e) �
��

�

�

− 4�
��

�

�

+ 6�
��

�

�

− 4�
��

�

�

+ �� +
��

�������
��� − 124�

��
�

�

− 474�
��

�

�

− 124�
��

�

�

+ �
��

�

�

� 

(f) ���� − �� − ℎ��
′ −

�

�
ℎ���

′′ −
�

�
ℎ���

′′′ −
27312614539002931

1161157776629760000
ℎ��� −

215021456509297

3547982095257600
ℎ����� +

2405950254864953

13516122267648000
ℎ����� −

228535928736331

465478700544000
ℎ����� +

43830916431996773

40548366802944000
ℎ����� −

1983716565322187

1055947052160000
ℎ����� +

188870621369290423

72987060245299200
ℎ����� −

16765512493838707

5913303492096000
ℎ����� +

77901096585757121

31537618624512000
ℎ����� −

38820512227495919

22808456326656000
ℎ����� +

26549037149067547

28963119144960000
ℎ������ −

63857023621987

168951528345600
ℎ������ +

42069828441973351

364935301226496000
ℎ������ −

31069509811453

1267136462592000
ℎ������ +

307336703482477

94612855873536000
ℎ������ −

14651877357209

72572361039360000
ℎ������ 

To further authenticate the proposed technique, the compact equation (15) is applied to the discrete scheme presented in 
(a).  The resulting expressions are given as follows: 

�� = 1 +
��

��
−

��

��
−

��

��
+

�

��
= 0  

�� = 1(7) +
��

��
(4) −

��

��
(2) −

��

��
(6) = 0  

�� =
�

�!
�1(7)� +

��

��
(4)� −

��

��
(2)� −

��

��
(6)�� = 0  

�� =
�

�!
�1(7)� +

��

��
(4)� −

��

��
(2)� −

��

��
(6)�� = 0  

�� =
�

�!
�1(7)� +

��

��
(4)� −

��

��
(2)� −

��

��
(6)�� − �

�

��
+

��

��
+

���

��
−

�

��
� = 0  

�� =
�

�!
�1(7)� +

��

��
(4)� −

��

��
(2)� −

��

��
(6)�� − �

�

��
(1) +

��

��
(3) +

���

��
(5) −

�

��
(7)� = 0  

�� =
�

�!
�1(7)� +

��

��
(4)� −

��

��
(2)� −

��

��
(6)�� −

�

�!
�

�

��
(1)� +

��

��
(3)� +

���

��
(5)� −

�

��
(7)�� = 0   
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�� =
�

�!
�1(7)� +

��

��
(4)� −

��

��
(2)� −

��

��
(6)�� −

�

�!
�

�

��
(1)� +

��

��
(3)� +

���

��
(5)� −

�

��
(7)�� = 0  

�� =
�

�!
�1(7)� +

��

��
(4)� −

��

��
(2)� −

��

��
(6)�� −

�

�!
�

�

��
(1)� +

��

��
(3)� +

���

��
(5)� −

�

��
(7)�� =

���

����
   

This analysis for this discrete scheme demonstrates that �� = �� = �� = ⋯ = �� = 0 , while �� ≠ 0 . Consequently, the 

method is of order 4 as  ���� ≠ 0  with an associated error constant of  
���

����
. 

Similarly, applying the same assessment to (b), (c), (d), (e) and (f) confirms that the methods achieve orders 4, 4, 6, 6, 9 

with corresponding error constants  
���

���
,

�����

�����������
,

�

����
,

�

�������������
,

��

����������
  respectively. 

5.  DISCUSSION OF RESULTS. 

The validations of the proposed technique in (15) were carried out with six selected fourth-order LMMs from the literature. 
The verification process involved computing the coefficients  ��  to �� for problems (a, b and c), ��  to  ���  for problems (d 
and e) and ��  to  ��� for problem (f) to ensure compliance with the required theoretical constraints that define the accuracy 
and stability of numerical schemes. The results indicate that the coefficients   ��  to  ��  for (a, b and c), ��  to  ��  for (d and 
e) and ��  to  ��  for (f) all equated to zero, which is a strong affirmation of the method’s correctness and consistency across 
varying accuracy levels. This outcome demonstrates that the proposed approach successfully captures the fundamental 
properties required for fourth-order numerical schemes while eliminating the cumbersome algebraic manipulations associated 
with traditional Taylor series expansions. 

A key take-away from these results is the efficiency and reliability of the new method in assessing the order and error 
constants of fourth-order LMMs. By offering a streamlined approach, this method significantly reduces the computational 
burden typically involved in the analysis of numerical methods, thereby making it more accessible for researchers and 
practitioners working in the field of numerical analysis. 

Furthermore, the ability of this technique to consistently validate multiple fourth-order LMMs underscores its general 
applicability. This suggests that it could be extended to even higher-order ≥ 5, potentially simplifying the design and analysis 
of numerical algorithms used in solving ODEs. The results of this study affirm that the newly developed concise method 
exhibits more efficient, accurate, and computationally feasible approach for determining the order and error constants of 
fourth-order LMMs. The findings contribute to advancing numerical analysis by offering a powerful tool that simplifies 
method validation, reduced implementation complexity, thereby enhancing its accuracy, efficiency and stability. 
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