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Abstract

The plane here, introduce and study the concepts of bounded completeness and �nitely completeness

on continuous information system. Further more compactly completeness, �nitarily completeness and

strongly compactly completeness for continuous information system: Some interactions between these

concepts are investigated. Some corresponding results in posets and domains due to R:Hechmann [5]

are generalized.
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1 Introduction:

In [5], the concepts of bounded complete posets, bounded complete domains, �nitely complete posets, �nitely complete

domains. It worth to mention that H. Zhang [18] studied some interactions between bounded complete domains and

scott-topology and lawson topology. It is interset to mention that in 1994 [1], S. Abramsky and A. Jung considered the

concepts of continuous directed complete posets (continuous domain) and algebraic domains. R. Hekmann considered

and studies these concepts in detail in this paper [5]. Continuous posets were introduced and studied independently

by R. E. Ho¤mann [ 2,6,7,8], J. D. Lawson [11,12] and in more fashion by G. Markowsky [14] and M. Erne [3].

It is worth to mention that J. Nino-Salcedo, considered and studied in moredetails. Our aims here is devoted to

introduce and study concepts of bounded completeness and �nitely completeness on continuous information system.
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Further more compactly completeness, �nitarily completeness and strongly compactly completeness for continuous

information system: Some interactions between these concepts are investigated. Some corresponding results in posets

and domains due to R:Hechmann [5] are generalized.

De�nition 1.1. Let A � X: Then:
(1) The lower (resp. upper) bounded subset in X of � is denoted by lb(�) (resp. ub(�)) and de�ned as

follows:

lb(�) = fx 2 X : 8 y 2 �; x � y) (resp. ub(�) = fx 2 X : 8 y 2 �; y � x):
(2) The subset of least (resp. largest) elements of a subset � is denoted by le(�) (resp. la(�)) and de�ned

as follows:

le(�) = fx 2 � : 8 y 2 �; x � y) (resp. la(�) = fx 2 � : 8 y 2 �; y � x):Each element in le(�) (resp.
la(�)) is aclled a least (resp. largest ) element of � [13]:

(3) The in�mum (resp. supremum) subset in X is denoted by
V
(�) (resp.

W
(�)) and de�ned as follows:V

(�) = la(lb(�)) (resp.
W
(�) = le(ub(�)):Each element in

V
(�) (resp.

W
(�)) is aclled a in�mum (resp.

supremum ) element of � [13]:

(4) The lower ( resp. upper) closure in X of � is denoted by # � (resp. " � ) and de�ned as follows:
# � = fx 2 X : 9 y 2 � s:t: x � y g( resp. " � = fx 2 X : 9 y 2 � s:t: y � x g)[5];
(5) An upper (resp. a lower) cone of X i¤ 9 x 2 � s:t: � = " x (resp. � = # x)[5]:

Proposition 1.1. (Proposition 5.2.1 [5]) For a poset (X;�); the following statements are equivalent:
(1) X is upper cone, and 8x; y 2 X; then the set " x\ " y is empty or an upper cone;
(2) X has a least element, and every two points with a common upper bound have a common least upper

bound;

(3) The set of upper bounds of a �nite set is either empty or an upper cone; and

(4) Every �nite bounded subset of X has a supremum.

Poset with each of these equivalent properties are called bounded complete.

Proposition 1.2. (Proposition 5.2.2 [5]). For a poset (X;�); the following statements are equivalent:
(1) Every bounded subset of X has a supremum. and;

(2) Every nonempty subset of X has a in�mum.:

Proposition 1.3. (Proposition 5.2.3 [5]). For a domain X; the statements in Proposition 2.1 and

Proposition 2.2 above are equivalent. Every domian satis�es one of these statments is called a bounded

complete domain.

Proposition 1.4. (Proposition 5.2.4 [5]). Arbitrary products of bounded complete domains are bounded

complete domains.

Proposition 1.5. (Proposition 5.3.1 [5]). For a poset (X;�); the following statements are equivalent:
(1) X is upper cone, and 8x; y 2 X; then the set " x\ " y is empty or an upper cone;
(2) X has a least element, and every two points have a common least upper bound;
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(3) The set of upper bounds of a �nite set is an upper cone; and

(4) Every �nite subset of X has a supremum.

Proposition 1.6. (Proposition 5.3.2 [5]). For a poset (X;�); the following statements are equivalent:
(1) X is �nitely complete domain;

(2) All �nite and all directed subset of X have supermum;

(3) Every subset of X has a supremum;

(4) Every subset of X has a in�mum; and

(5) X is bounded complete domains with greatest element.

We call posets which satis�es one of these equivalent properties �nitely complete domains. The complete

domain is also known as a complete lattice.

Proposition 1.7. (Proposition 5.4.1 [5]). For a poset (X;�); the following statements are equivalent:
(1) The set of upper bounds f every �nite set is �nitary;

(2) X is �nitary, and for every two points x and y; the set " x\ " y is �nitary;
(3) X is �nitary, and intersection of two �nitary upper sets is �nitary; and

(4) Finite intersection of �nitary sets are �nitary.

A poset satisfying one of these equivalent conditions is said to have �nitarily complete.

Proposition 1.8. (Proposition 5.4.2 [5]). In a poset (X;�); the following statements are equivalent:
(1) Every �nite poset is �nitarily complete; and

(2) Every bounded copmlete poset is �nitarily complete.

Proposition 1.9. (Proposition 5.4.3 [5]). If X and Y are �nitarily set, then X � Y is �nitary set.

Proposition 1.10. (Proposition 4.7.4 [5]). If A and B are strongly compact, then A [B so is.

Proposition 1.11. (Proposition 5.5.1 [5]). For a domain X; the following statements are equivalent:

(1) X is strongly compac; and 8x; y 2 X; then the set " x\ " y is strongly compact; and
(2) X is �nitary and the intersection of two �nitary upper sets is strongly compact.

Domains with these equivalent properties are called strongly compactly complete.

De�nition 1.2. Let ` �0 be a binary relation set on X 6= �. Then;
(1) ` �0 is called re�exive i¤ 8 x 2 X; x � x [13];

(2) ` �0 is called antisymetric i¤ 8 x; y 2 X; x � y and y � x ) x = y [13];

(3) ` �0 is called transitive i¤ 8 x; y; z 2 X; x � y and y � z ) x = z[13];

(4) ` �0 is called symetric i¤ 8 x; y 2 X; x � y ) y � x [13];
(5) ` �0 is called interpolative i¤ 8 x; z 2 X; with x � z; 9 y 2 X s:t: x � y � z [5; 16]:
(6) if ` �0satis�es the conditions (1), (2) and (3), then (X;�) is called Partialy order set (Poset) [13];
(7) if ` �0satis�es the conditions (1), and (3), then (X;�) is called pre-orderd set (Quasi set)[13];
(8) if ` �0satis�es the conditions (1), (2), (3) and (4), then (X;�) is called an equvalence set,
(9) if ` �0satis�es the conditions (3) and (5), then (X;�) is a continuous information system [10,16].
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(10) if ` �0satis�es the conditions (3), and 8 x 2 X; and for every �nite subset � of X the following

axiom holds: if 8 y 2 �; y � x then 9 z 2 X s:t: 8 y 2 �; y � z and z � x; then (X;�) is abstract
basis [17].

De�nition 1.3. (1) A poset (X;�) is called domain i¤ for every directed subset � of X,
W
(�) exists [5].

(2) � is called directed subset of X i¤ � 6= � and 8 x; y 2 �; 9 z 2 � s:t: x � z and y � z [5];

De�nition 1.4. Let A � X: Then:
(1) A subset A of the domain [3] (resp. Poset ) X is called directed closed ( d-closed for short) i¤ 8

directed subset D of A;
W
(D) 2 A;

(2) A subset A of the Poset X is called Scott-closed i¤ A is d-closed lower subset of X [11] ;

(3) A is called d-(resp. Scott-) open i¤ Ac d-(resp. Scott-) closed [3,11];

De�nition 1.5. For any poset X consider the following topologies:

(1) �d = fA � X : A is d-openg is a topology on X ( see proposition 3.5.2 [3]) in the case of X is a

domain) and is called the directed topology ) (d-topology for short );

(2) �Ajx = fA � X : A is an upper subset g is a topology on X ([3]) in the case of X is a domain) and

is called the Alexandro¤ topology ) (Alex-topology for short );

(3) �S = fA � X : A is Scott open subset g is a topology on X ( see [3,6,11]) ) and is called the Scott-

topology );

(4) The upper topology onX is denoted by �U and is the topology generated by subbasis fX� # x : x 2 Xg[6];
(5) TheLower topology onX is denoted by �L and is the topology generated by subbasis fX� " x : x 2 Xg[6];
(6) The interval topology �I on X is the supremum of �U and �L i.e., �I = �U

W
�L[6] ;

(7) The Lowson topology �LS on X is the supremum of �S and �L i.e., �LS = �L
W
�S [6].

(8) Let (X; �) be a topological space, and let A � X; then the closure of � denoted by cl�(�) de�ned as

follows cl�(�) = \fF � X : F is �-closed and � � Fg [9]:

Proposition 1.5 (Proposition 4.6.8 [5]).Let (X;�) be a domain. Then every compact open set in (X; �S)
is �nitary.

De�nition 1.6.[5] Let (X;�) be a poset. A subset � of X is called �nitary i¤ 9.a �nite subset F of A with
� � " (F )

De�nition 1.7. [5] Let (X;�) be a poset : A subset A � X is called strongly compact i¤ 8 
 2 �S with
A � 
; 9 a �nitary set F with A � F � 
:

2. Bounded complete continuous information system and bounded complete do-
main continuous information system

De�nition 2.1. An continuous information system (X;�) is bounded complete i¤ X is upper cone, and

8 x; y 2 X; ub(fx; yg) is empty or an upper cone.
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Theorem 2.1. For a continuous information system (X;�); the following statements are equivalent:
(1) X is bounded complete continuous information system;

(2) le(X) 6= � and 8x; y 2 X; with ub(�) = (fx; yg) 6= �;
W
(fx; yg) 6= �;

(3) If � is a �nite bounded subset from above, then
W
(�) 6= �; and

(4) If � is a �nite subset of X; then ub(�) is either � or an upper cone.

Proof (1) ) (2) : Because X is bounded complete, then X is an upper cone, and 9 a 2 X s.t.,

" a = X: So, f�g � lb(X): If ub(fx; yg) 6= �, then ub(fx; yg) is an upper cone. There exists � 2 ub(fx; yg) s.t.,
" � = ub(fx; yg): So, � 2 lb(ub(fx; yg)); i.e.,

W
(fx; yg) 6= �;

(2) ) (3) : � is a �nite bounded subset from above, Since ub(�) = X 6= �: Since le(X) = le(ub(�)) 6=
�;
W
(�) 6= �: Let � be a non-empty �nite bounded subset from above. If � = fzg and ub(fzg) 6= �; thenW

(�) 6= �: Let � = fx1; x2; x3; :::::; xng and ub(�) 6= �: Now �1;2 = fx1; x2g and ub(�1;2) 6= �;
W
(�1;2) 6=

�: Take u1;2 2
W
(�1;2) and consider �1;2;3 = fu1;2; x3g: Then

W
(�1;2;3) 6= �: because ub(�1;2;3) 6= �: We

can proceed until consider the set � = fu1;2;::::::::::::n�1; xng: Since ub(�) 6= �; then
W
(�) 6= �: Now

8l 2
W
(�); l 2 ub(�): Since m 2 ub(�); one can deduce that l � m: Then l 2

W
(�): So,

W
(�) 6= �;

(3) ) (4) : Let � be a �nite subset of X: If � is not bounded from above, then ub(�) = �: Let � is a �nite

bounded subset from above. Then
W
(�) = le(ub(�)) 6= �: Then 9 x 2 ub(�) s.t., " x = ub(�);

(4) ) (1) : Now, X = ub(�) and so X is an upper cone. Since 8x; y 2 X; fx; yg is �nite. Then ub(fx; yg) =
� or ub(fx; yg) is an upper cone. .

Note 2.1.We refere that Theorem 2.1 is a generalization of the corresponding result in Proposition 1.1

(Proposition 5.2.1 [5]).

The following Lemma is a generalization of the corresponding result in Proposition 1.2 (Proposition 5.2.2

[5]).

Lemma 2.1. For a continuous information system (X;�); the following statements are equivalent:
(1) If � is a �nite bounded subset from above, then

W
(�) 6= �; and

(2) If � is a non-empty subset of X; then
V
(�) 6= �:

Proof (1) ) (2) : Let � is a non-empty subset of X and let � = lb(�); Now ub(�) � � 6= �: Then
W
(�) 6= �;

let x 2
W
(�): Now, x 2 ub(�): Then 8 a 2 �; x � a: Then x 2 la(lb(�)) =

V
(�): Hence

V
(�) 6= �:

(2) ) (1) : Let � is a �nite bounded subset of X from above. and let � = ub(�) 6= �: Then
V
(�) 6= �; let

x 2
V
(�): Since, � � lb(�) and x 2

V
(�); then 8 a 2 �; a � x: So, x 2 le(ub(�)) =

W
(�): Hence

W
(�) 6= �:

De�nition 2.2. An continuous information system (X;�) is bounded complete domain i¤ it is bounded

complete and domain.

Theorem 2.2. For a domain continuous information system (X;�); the following statements are equiva-
lent:

(1) X is bounded complete continuous information system;

(2) le(X) 6= � and 8x; y 2 X; with ub(�) = (fx; yg) 6= �;
W
(fx; yg) 6= �;
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(3) If � is a �nite bounded subset from above, then
W
(�) 6= �;

(4) If � is a �nite subset of X; then ub(�) is either � or an upper cone;

(5) If � is bounded subset from above, then
W
(�) 6= �; and

(6) If � is a non-empty subset of X, then
V
(�) 6= �:

Proof We refere that Theorem 2.1 and Lemma 2.1, it rests to proof that (3) and (5) are equivalent.

(3) ) (5) : Let � be bounded subset of X from above. Let D = fx : x is �xed point of
W
F for every

�nite subset F of �g: Since
W
(�) = � and 8 y 2

W
(F1 [ F2); y 2 ub(

W
(F1) [ (

W
(F2))); where F1; F2 are

�nite subsets of � then is directed. Then
W
(D) = �: Now 8 l 2

W
(D); l 2 ub(�): Let z 2 ub(�): Then

8 m 2 �; m � z; so z 2 ub(�) Thus l � z so that l 2
W
(�): Hence

W
(D) �

W
(�) so that

W
(�) 6= �:

(5) ) (3) : Obvious.

Note 2.2.We refere that Theorem 2.2 is a generalization of the corresponding result in Proposition 1.3.

(Proposition 5.2.3 [5]).

De�nition 2.3. [13] Let (Xi;�i: i 2 I) be a family of posets. The Cartesian product relation 0 �0 onQ
i2I
Xi of f�i: i 2 Ig is de�ned as follows: (xi)i2I � (yi)i2I i¤ xi �i yi 8 i 2 I

Theorem 2.3. Let (Xi : i 2 I) be a family of continuous information system. If 8 i 2 I, Xi is bounded
complete domain, then

Q
i2I
Xi so is.

Proof Let � be a subset of
Q
i2I
Xi.bounded from above by a point u = (ui)i2I : Let �i =

Q
�i 8 i 2 I. Then

�i is a bounded subset of Xi from a bove by ui ; 8 i 2 I. Then
W
(�i) 6= � 8 i 2 I: Let ki 2

W
(�i) 8 i 2 I so

that (ki)i2I 2
W
(�): Hence from Theorem 2.2,

Q
i2I
Xi.is bounded complete domain.

Note 2.3.We refere that Theorem 2.3 is a generalization of the corresponding result in Proposition 1.4.

(Proposition 5.2.4 [5]).

3. Finitely complete continuous information system and bounded complete do-
main continuous information system

De�nition 3.1. An continuous information system (X;�) is �nitely complete i¤ X is upper cone, and

8 x; y 2 X; ub(fx; yg) is an upper cone.

One can easily deduce that any Finitely complete continuous information system is a bounded complete

continuous information system.

Theorem 3.1. For a continuous information system (X;�); the following statements are equivalent:
(1) X is �nitley complete continuous information system;

(2) X has a least element and 8x; y 2 X;
W
(fx; yg) 6= �;

(3) If � is a �nite subset of X, then
W
(�) 6= �; and

(4) If � is a �nite subset of X; then ub(�) is an upper cone.
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Proof (1) ) (2) : Since X is an upper cone, and 9 a 2 X s.t., " a = X: So, a 2 le(X):let x; y 2
X: Then 9 z 2 ub(fx; yg) s.t. " z 2 ub(fx; yg): So, z 2

W
(fx; yg);

(2) ) (3) : � is a �nite set, Since 9 x 2 le(X); then 9 x 2
W
(�): Let � = fx1; x2; x3; :::::; xng; i.e., � is a

�nite set. Now, �1;2 = fx1; x2g; then 9 u1;2 2
W
(�1;2): Put �1;2;3 = fu1;2; x3g so that 9 u1;2;3 2

W
(�1;2;3):We

can proceed until consider the set � = fu1;2;3;::::::::;n�1; xng so that 9 l 2
W
(�): Then l 2 ub(�). Let

m 2 ub(�): one can deduce that l � m: Then l 2
W
(�):

(3) ) (4) : Let � be a �nite subset of X; then
W
(�) = �: i.e., 9 l 2 le(ub(�)) so that " l = ub(�); i.e.,

ub(�) is an upper cone;

(4) ) (1) : Since � is a �nite set, and X = ub(�), then �) is an upper cone. For every fx; yg 2 X; the
set fx; yg is �nite, then ub(fx; yg) is an upper cone.

Note 3.1.We refere that Theorem 3.1 is a generalization of the corresponding result in Proposition 1.5

(Proposition 5.3.1 [5]).

De�nition 3.2. An continuous information system (X;�) is complete domain i¤ X is �nitely complete

and domain.

Theorem 3.2. For a continuous information system (X;�); the following statements are equivalent:
(1) X is complete domain;

(2) X is bounded complete domain with la(X) 6= �;
(3) If � is a �nite subset of X, then

V
(�) 6= �; and

(4) If � is a �nite subset of X, then
W
(�) 6= �; and

(5) If � is a �nite subset of X or a directed subset of X; then
W
(�) 6= �:

Proof (1) ) (2) : It is clear that any complete domain is bounded complete domain. Since 8 x; y 2
X: ub(fx; yg) is an upper cone so that ub(fx; yg) 6= �: Then X is directed which imolies that la(X) =W
(�) 6= �;

(2) ) (3) : Let � be a �nite subset of X: First, if � = �; then lb(�): Since le(X) 6= �; then 9 l 2V
(�): Secound, if � 6= �; then from Theorem 2.1(6)

V
(�) 6= �:

(3) ) (4) : Let � be a �nite subset of X; Since
V
(�) = �: i.e., 9 l 2 la(�) so that every subset of X is

bounded from above. From Lemma 2.1,
W
(�) 6= �;

(4) ) (5) : Obvious; and

(5) ) (1) : Since for every directed subset � of X;
W
(�) 6= �; then X is a continuous information system.

From Theorem 3.1(3), X is a �nitely complete continuous information system.

Note 3.2.We refere that Theorem 3.2 is a generalization of the corresponding result in Proposition 1.6

(Proposition 5.3.2 [5]).

4. Finitarily complete continuous information system and compactly complete
continuous information system
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De�nition 4.1. Let (X;�) be a continuous information system. A subset � of X is called �nitary i¤ 9.a
�nite subset F of A with � � " (F )

Theorem 4.1.Let (X;�) be a continuous information system. and let f�i : i 2 f1; 2; 3; :::::; ngg be a family
of �nitary subset of X: . Then

S
j = 1

n�j is a �nitary subset.

Proof Since 8 i 2 f1; 2; 3; :::::; ng; 9 a �nite subset Ki s.t., Ki � �i � " (Ki), thenSn
j=1Ki �

Sn
j=1 �i �

Sn
j=1 " (Ki) � "

Sn
j=1(Ki). Since

Sn
j=1Ki is �nite, then it is clear thatSn

j=1 �i is �nitary.

De�nition 4.2. A continuous information system. (X;�) is called �nitarily complete i¤X is called �nitary,

8x; y 2 X; ub(fx; yg) is �nitary.

Theorem 4.2. For a continuous information system (X;�); the following statements are equivalent:
(1) X is �nitarily complete;

(2) X is �nitary and if � and � are �nitary upper sets, then � \ � is �nitary;
(3) If �1; :::::::; �n are �nitary subsets, then

nT
i=1

�i is �nitary;

(4) If � is a �nite subset of X, then ub(�) is �nitary.

Proof (1) ) (2) : If is �nitarily complete, then X is �nitary. If � is �nitary upper set, then there exists a

�nite set F1 � � s.t., � � " (F1) and " � � �: Hence � = " (F1) and if � is �nitary upper set, then there
exists a �nite set F2 � � s.t., � � " (F2) and " � � �: Hence � = " (F2): Thus
� \ � = " (F1)\ " (F2) = (

S
a2F1

" a)
T
(
S
b2F2

" b) =
S

a2F1; b2F2
(" a

T
" b); i.e., � \ � is a �nite union of

�nitary sets. So that � \ � is a �nitary;
(2) ) (3) : By indication. The empty intersection is X;

(3) ) (4) : If � is a �nite, then ub(�) = (
S
e2B

" e): upper cones are �nitary;

(4) ) (1) : X is the set of upper bounds of �, and " x
T
" y is the set of upper bounds of fx; yg:

Note 4.1.We refere that Theorem 4.2 is a generalization of the corresponding result in Proposition 1.7.

(Proposition 5.4.1 [5]).

Theorem 4.3. Let (X;�) be a continuous information system; then;
(1) Every �nite continuous information system is �nitarily complete; and

(2) Every bounded complete continuous information system is �nitarily complete continuous information

system.

Proof Follow directly from Theorem 2.2 and the fact all �nite sets are �nitary.

Note 4.2.We refere that Theorem 4.3 is a generalization of the corresponding result in Proposition 1.8.

(Proposition 5.4.2 [5]).
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Theorem 4.4. Let (X;�) be a continuous information system: If X and Y are �nitarily complete, then

X � Y so is.

Proof Product of �niary sets are �nitary. Hence X � Y is �nitary. furthermore,

" (x1; y1)
T
" (x2; y2) = (" x1� " y1)

T
(" x2� " y2) = (" x1

T
" y1)� (" x2

T
" y2) holds.

The �nal outcome is �nitary as product of �nitary sets.

Note 4.3.We refere that Theorem 4.4 is a generalization of the corresponding result in Proposition 1.9.

(Proposition 5.4.3 [5]).

De�nition 4.3. Let (X;�; �) be a topological continuous information system. A subset � of X is called

strongly compact 8 
 2 � s.t., � � 
; 9 a �nitary subset F with � � F � 
:

Theorem 4.5. Let (X;�; �) be a topological continuous information system such that each member of � is

an upper subset. If a subset � of X is strongly compact, then � is compact.

Proof Let U be an open cover of �; i.e., � �
S
�2U

� and U � �: Put
S
�2U

� = G: Then � � G � �: Since �

of X is strongly compact, then there exists a �nitary subset K of G s.t., � � K � G so that there exists

a �nite subset F of K s.t., K � " (F ); Then 8 x 2 F; 9 Bx 2 U s.t., x 2 Bx so that F �
S
x2F

Bx so that

� � K � " (F ) � " (
S
x2F

Bx) =
S
x2F

Bx: Hence � is compact.

Corollary 4.1. (1) Let �Ajx is Alexandro¤ topology induced by 0 �0, let � of X is strongly compact, then

� is compact,

(2) Let �S is Scott- topology induced by 0 �0, let � of X is strongly compact, then � is compact

Theorem 4.6. Let (X;�; �) be a topological continuous information and let f�i : i 2 f1; 2; 3; :::::; ngg be a
strongly compact subsets of X: Then

nS
i=1

�i is strongly compact subsets of X:

Proof Let 
 2 � s.t.,
nS
i=1

�i � 
: Then 8i 2 I; 9 a �nitary subset Ki s.t. �i � Ki � 
 so that

nS
i=1

�i �
nS
i=1

Ki � 
: From Theorem 4.1
nS
i=1

Ki is �nitary, then
nS
i=1

�i is strongly compact.

Note 4.4.We refere that Theorem 4.6 is a generalization of the corresponding result in Proposition 1.10.

(Proposition 4.7.4 [5]).

De�nition 4.4. Let (X;�; �) be a topological continuous information system. A subset � of X is called

strongly compact complete continuous information system i¤ X is strongly compact and let 8 x; y 2
X; ub(fx; yg) is strongly compact.

Theorem 4.7. Let (X;�; �) be a continuous information system; If
(1) X is strongly compactly complete; and

(2) X is �nitary and the intersection of two �nitary upper sets is strongly compact. Then
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(i) (1)) (2);

(ii) If 0 �0 is re�exive, (2)) (1):

Proof (i) Since X is strongly compac and open, then there exists a �nitary � of X s.t. X � � � X

so that X is is �nitary. Let � and � bbe two �nitary upper sets. Then there are �nite sets E and F s.t.

� � " (E) � " (�) � � and � � " (F ) � " (�) � �: So � � " (E) and � � " (F ): Now � \ � � " (E)\ "
(F ) =

S
e2E; f2F

(" e
T
" f) so that, from Theorem 4.6, � \ � is strongly compact.

(ii) Since X is �nitary and the only open set containing X , then X is strongly compact. Let x; y 2
X; since 0 �0is re�exive, 8 x 2 X; " x is �nitary and since 0 �0transitive, then " x is upper set. Hence
" x\ " y is strongly compact.

Note 4.4.We refere that Theorem 4.7 is a generalization of the corresponding result in Proposition 1.11.(Propo-

sition 5.5.1 [5]).

De�nition 4.5. Let (X;�; �) be a topological continuous information system. X is called compactly

complete i¤X is compact and let 8 x; y 2 X; ub(fx; yg) is compact.

De�nition 4.6. Let (X;�; �) be a topological continuous information system. We say that � has the
property F i¤ every compact open set in (X; �) is �nitary.

Example 4.1 From Proposition 1.5 (Proposition 4.6.8 [5]).In (X;�; �S) where X is a domain. and �S is

Scott-topology induced by 0 �0 ; �S has the property F:

Theorem 4.8. Let (X;�; �) be a continuous information system; If
(1) X is compactly complete; and

(2) X is �nitary and the intersection of two �nitary upper sets is compact. Then

(i) If � has the property F; (1)) (2); and

(ii) If 0 �0 is re�exive, and each member of � is upper set, then (2)) (1):

Proof (i) Since � has the property F; then X is �nitary. Let U and V be two �nitary upper sets. Then

there are �nite sets E and M s.t. U � " (E) � " (U) � U and V � " (M) � " (V ) � V: So, So U � " (E)
and V � " (M): Now U \ V � " (E)\ " (M) =

S
e2E; m2M

(" e
T
" m) so that U \ V is compact.because a

�nite union of comact subset is compact:

(ii) Since X is �nitary , then X is strongly compact. From Theorem 4.5, X is compact. since 0 �0is
re�exive, then 8 x 2 X; x 2 " x so that " x is �nitary. Furthermore 8 x 2 X; " x is upper set. Hence
8 x; y 2 X; " x \ " y is compact.

5- Conclusion
We have done the research tasks such that the correspoding results of completeness properties in R. Heckmann

theorems [5], are strengthen by our results.Also, we can give open problem to the researchers if can get our results
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if a binary relation ` �0 be a binary relation set on X 6= � have one only condition on De�nition 1.2.

No con�ict of interest
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