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Abstract

The plane here, introduce and study the concepts of bounded completeness and finitely completeness
on continuous information system. Further more compactly completeness, finitarily completeness and
strongly compactly completeness for continuous information system. Some interactions between these
concepts are investigated. Some corresponding results in posets and domains due to R.Hechmann [5]

are generalized.
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1 Introduction:

In [5], the concepts of bounded complete posets, bounded complete domains, finitely complete posets, finitely complete
domains. It worth to mention that H. Zhang [18] studied some interactions between bounded complete domains and
scott-topology and lawson topology. It is interset to mention that in 1994 [1], S. Abramsky and A. Jung considered the
concepts of continuous directed complete posets (continuous domain) and algebraic domains. R. Hekmann considered
and studies these concepts in detail in this paper [5]. Continuous posets were introduced and studied independently
by R. E. Hoffmann [ 2,6,7,8], J. D. Lawson [11,12] and in more fashion by G. Markowsky [14] and M. Erne [3].
It is worth to mention that J. Nino-Salcedo, considered and studied in moredetails. Our aims here is devoted to

introduce and study concepts of bounded completeness and finitely completeness on continuous information system.
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Further more compactly completeness, finitarily completeness and strongly compactly completeness for continuous
information system. Some interactions between these concepts are investigated. Some corresponding results in posets

and domains due to R.Hechmann [5] are generalized.

Definition 1.1. Let A C X. Then:

(1) The lower (resp. upper) bounded subset in X of A is denoted by Ib(\) (resp. ub())) and defined as
follows:

bAN)={zeX: Vyed z<y)(resp. ub(A\) ={zeX: Vyel y<a).

(2) The subset of least (resp. largest) elements of a subset A is denoted by le(\) (resp. la())) and defined
as follows:

leN)={zer: Yye z<y) (resp.lal\) ={z e X: Vye A, y<z).Each element in le(\) (resp.
la(N)) is aclled a least (resp. largest ) element of A [13].

(3) The infimum (resp. supremum) subset in X is denoted by A(X) (resp. /(X)) and defined as follows:

A = la(lb(N)) (resp. \/(A) = le(ub())).Each element in A(X) (resp. V/(A)) is aclled a infimum (resp.
supremum ) element of A [13].

(4) The lower ( resp. upper) closure in X of A is denoted by | A (resp. T A ) and defined as follows:
IA={zeX: T yel st.a<y}resp. A={zeX:3 yel st.y<z})5];

(5) An upper (resp. a lower) cone of X if 3z € X\ sit. A=Tx (resp. A= ] z)[5].

Proposition 1.1. (Proposition 5.2.1 [5]) For a poset (X, <), the following statements are equivalent:

(1) X is upper cone, and Vz,y € X, then the set T 2N 1 y is empty or an upper cone;

(2) X has a least element, and every two points with a common upper bound have a common least upper
bound,;

(3) The set of upper bounds of a finite set is either empty or an upper cone; and

(4) Every finite bounded subset of X has a supremum.

Poset with each of these equivalent properties are called bounded complete.

Proposition 1.2. (Proposition 5.2.2 [5]). For a poset (X, <), the following statements are equivalent:
(1) Every bounded subset of X has a supremum. and;

(2) Every nonempty subset of X has a infimum..

Proposition 1.3. (Proposition 5.2.3 [5]).  For a domain X, the statements in Proposition 2.1 and
Proposition 2.2 above are equivalent. Every domian satisfies one of these statments is called a bounded

complete domain.

Proposition 1.4. (Proposition 5.2.4 [5]). Arbitrary products of bounded complete domains are bounded

complete domains.
Proposition 1.5. (Proposition 5.3.1 [5]). For a poset (X, <), the following statements are equivalent:

(1) X is upper cone, and Vz,y € X, then the set T 2N 1 y is empty or an upper cone;

(2) X has a least element, and every two points have a common least upper bound;
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(3) The set of upper bounds of a finite set is an upper cone; and

(4) Every finite subset of X has a supremum.

Proposition 1.6. (Proposition 5.3.2 [5]). For a poset (X, <), the following statements are equivalent:
1) X is finitely complete domain;

2) All finite and all directed subset of X have supermum;

3) Every subset of X has a supremum;

4) Every subset of X has a infimum; and

(
(
(
(
(

5) X is bounded complete domains with greatest element.

We call posets which satisfies one of these equivalent properties finitely complete domains. The complete

domain is also known as a complete lattice.

Proposition 1.7. (Proposition 5.4.1 [5]). For a poset (X, <), the following statements are equivalent:
(1) The set of upper bounds f every finite set is finitary;
(2) X is finitary, and for every two points z and y, the set T N 1 y is finitary;
(3) X is finitary, and intersection of two finitary upper sets is finitary; and
(4) Finite intersection of finitary sets are finitary.

A poset satisfying one of these equivalent conditions is said to have finitarily complete.

Proposition 1.8. (Proposition 5.4.2 [5]). In a poset (X, <), the following statements are equivalent:
(1) Every finite poset is finitarily complete; and
(2) Every bounded copmlete poset is finitarily complete.

Proposition 1.9. (Proposition 5.4.3 [5]). If X and Y are finitarily set, then X x Y is finitary set.
Proposition 1.10. (Proposition 4.7.4 [5]). If A and B are strongly compact, then AU B so is.

Proposition 1.11. (Proposition 5.5.1 [5]). For a domain X, the following statements are equivalent:
(1) X is strongly compac; and Vz,y € X, then the set T 2N 1 y is strongly compact; and
(2) X is finitary and the intersection of two finitary upper sets is strongly compact.

Domains with these equivalent properties are called strongly compactly complete.

Definition 1.2. Let ~ <’ be a binary relation set on X # ¢. Then;
(1) “ <’ is called reflexive iff V x € X, z <z [13];
(2) * <’ s called antisymetric iff V z,y € X, z <yand y <z =z =y [13];
(3) "<’ is called transitive iff V z,y,2 € X, s <yand y <z =z = 2[13];
(4) * <’ is called symetric if Vz,y € X, s <y =y <ax [13];

(5) <’ is called interpolative iff V 2,z € X, with 2 <z 3 ye X si.z<y<z]I516].

(6) if * <'satisfies the conditions (1), (2) and (3), then (X, <) is called Partialy order set (Poset) [13];
(7) if * <'satisfies the conditions (1), and (3), then (X, <) is called pre-orderd set (Quasi set)[13];

(8) if * <’satisfies the conditions (1), (2), (3) and (4), then (X, <) is called an equvalence set,

(9) if * <’satisfies the conditions (3) and (5), then (X, <) is a continuous information system [10,16].
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(10) if ° <’satisfies the conditions (3), and V # € X, and for every finite subset A of X the following
axiom holds: if Vy e A\, y <z then3d z€ X sit.Vyel y<zand z <z, then (X, <) is abstract
basis [17].

Definition 1.3. (1) A poset (X, <) is called domain iff for every directed subset A of X, \/(\) exists [5].
(2) A is called directed subset of X iff A\£¢pandVax,ye X, Fz€ X st <z and y <z [5];

Definition 1.4. Let A C X. Then:

(1) A subset A of the domain [3] (resp. Poset ) X is called directed closed ( d-closed for short) iff V
directed subset D of A, \/(D) € 4;

(2) A subset A of the Poset X is called Scott-closed iff A is d-closed lower subset of X [11] ;

(3) A is called d-(resp. Scott-) open iff A° d-(resp. Scott-) closed [3,11];

Definition 1.5. For any poset X consider the following topologies:

(1) g = {AC X : Ais d-open} is a topology on X ( see proposition 3.5.2 [3]) in the case of X is a
domain) and is called the directed topology ) (d-topology for short );

(2) 042 = {AC X : Ais an upper subset } is a topology on X ([3]) in the case of X is a domain) and
is called the Alexandroff topology ) (Alex-topology for short );

(3) 6s = {A C X : Ais Scott open subset } is a topology on X ( see [3,6,11]) ) and is called the Scott-
topology );

(4) The upper topology on X is denoted by dyy and is the topology generated by subbasis {X— | z : z € X }[6];

(5) TheLower topology on X is denoted by d, and is the topology generated by subbasis {X— 1 z : z € X }[6];

(6) The interval topology d; on X is the supremum of dy and d, i.e., dr = oy V 6.[6] ;

(7) The Lowson topology drs on X is the supremum of dg and dr ie., dps = o1 \V ds [6].

(8) Let (X, ) be a topological space, and let A C X, then the closure of A denoted by cls(\) defined as
follows cls(A\) = N{F C X : Fis é-closed and A C F'} [9].

Proposition 1.5 (Proposition 4.6.8 [5]).Let (X, <) be a domain. Then every compact open set in (X,dg)

is finitary.

Definition 1.6.[5] Let (X, <) be a poset. A subset A of X is called finitary iff 3.a finite subset F' of A with
ACT(F)

Definition 1.7. [5] Let (X, <) be a poset . A subset A C X is called strongly compact iff V (O € dg with
AC (O, 3 afinitary set F with A C FF C Q.

2. Bounded complete continuous information system and bounded complete do-
main continuous information system

Definition 2.1. An continuous information system (X, <) is bounded complete iff X is upper cone, and

Va,y € X, ub({z,y}) is empty or an upper cone.
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Theorem 2.1. For a continuous information system (X, <), the following statements are equivalent:
(1) X is bounded complete continuous information system;

(2) le(X) # ¢ and Va,y € X, with ub(A) = ({z,y}) # ¢, V({=z,y}) # &

(3) If A is a finite bounded subset from above, then\/(\) # ¢; and

(4) If X is a finite subset of X, then ub()\) is either ¢ or an upper cone.

Proof (1) = (2) : Because X is bounded complete, then X is an upper cone, and 3 a € X s.t.,
1T a=X.So, {\} CIb(X). Hub({z,y}) # ¢, then ub({x, y}) is an upper cone. There exists p € ub({z, y}) s.t.,
T p=ub({z,y}). So, u € Wb(ub({z,y})), i.e., V({z,y}) # ¢;

(2) = (3) : ¢ is a finite bounded subset from above, Since ub(¢) = X # ¢. Since le(X) = le(ub(d)) #
o, V(@) # ¢. Let A be a non-empty finite bounded subset from above. If A\ = {z} and ub({z}) # ¢, then
V(A) # ¢. Let A = {x1,22,23,....., 2} and ub(A) # ¢. Now A1 o = {z1,22} and ub(M12) # ¢, V(A12) #
¢. Take u1 2 € \/(A1,2) and consider A; 23 = {ug2,23}. Then \/(A1,2,3) # ¢. because ub(A123) # ¢. We
can proceed until consider the set p = {u1,2,....... n-1,Zn}. Since ub(p) # ¢, then \/(u) # ¢. Now
Vi e V(p), I €ub(N). Since m € ub(A), one can deduce that [ < m. Then [ € \/()). So, V/(A) # ¢;

(3) = (4) : Let A be a finite subset of X. If A is not bounded from above, then ub(A) = ¢. Let A is a finite
bounded subset from above. Then \/(A) = le(ub(A)) # ¢. Then 3 = € ub(A) s.t., Tz = ub(N);

(4) = (1) : Now, X = ub(¢) and so X is an upper cone. Since Vz,y € X, {z,y} is finite. Then ub({z,y}) =
¢ or ub({x,y}) is an upper cone. .

Note 2.1.We refere that Theorem 2.1 is a generalization of the corresponding result in Proposition 1.1
(Proposition 5.2.1 [5]).

The following Lemma is a generalization of the corresponding result in Proposition 1.2 (Proposition 5.2.2

[5])-

Lemma 2.1. For a continuous information system (X, <), the following statements are equivalent:
(1) If X is a finite bounded subset from above, then\/(\) # ¢; and
(2) If A is a non-empty subset of X, then A(\) # ¢.

Proof (1) = (2): Let A is a non-empty subset of X and let p1 = Ib(\), Now ub(p1) 2 A # ¢. Then /(1) # ¢;
let =€\ (u). Now, x € ub(p). Then V a € A, x < a. Then = € la(lb(A)) = A(N). Hence A(N) # ¢.

(2) = (1) : Let A is a finite bounded subset of X from above. and let p = ub(\) # ¢. Then A(p) # ¢; let
x € A(p). Since, A C Ib(p) and x € A(u), then V a € A, a < z. So, = € le(ub(A)) = V/(N). Hence \/(A) # ¢

Definition 2.2. An continuous information system (X, <) is bounded complete domain iff it is bounded

complete and domain.

Theorem 2.2. For a domain continuous information system (X, <), the following statements are equiva-
lent:

(1) X is bounded complete continuous information system;

(2) le(X) # ¢ and Vr,y € X, with ub(A) = ({z,y}) # ¢, V({z,y}) # &;
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(3) If X is a finite bounded subset from above, then\/(\) # ¢;

(4) If X is a finite subset of X, then ub()\) is either ¢ or an upper cone;
(5) If A is bounded subset from above, then\/()\) # ¢; and

(6) If A is a non-empty subset of X, then/\(\) # ¢.

Proof We refere that Theorem 2.1 and Lemma 2.1, it rests to proof that (3) and (5) are equivalent.

(3) = (5) : Let A be bounded subset of X from above. Let D = {z : z is fixed point of \/ F for every
finite subset F' of A}. Since \/(¢p) =g andVy € V(F1UF), y € ub(\V/(F1)U(V(Fy))), where Fy, F; are
finite subsets of A then is directed. Then \/(D) = ¢. Now V I € \/(D), | € ub(\). Let z € ub(\). Then
VmeA m<z so z€ub(\) Thus I < z so that [ € \/(A). Hence\/(D) C V/(X) so that\/(\) # ¢.

(5) = (3) : Obvious.

Note 2.2.We refere that Theorem 2.2 is a generalization of the corresponding result in Proposition 1.3.
(Proposition 5.2.3 [5]).

Definition 2.3. [13] Let (X;,<;: ¢ € I) be a family of posets. The Cartesian product relation ’ <’ on
[T1X: of {<;:i € I} is defined as follows: (x;)icr < (yi)ier iff x; <;y;Viel
ierl
Theorem 2.3. Let (X; : ¢ € I) be a family of continuous information system. If V ¢ € I, X, is bounded
complete domain, then []X; so is.
iel
Proof Let A be a subset of [] X;.bounded from above by a point v = (u;);er. Let A; = [[M\; Vi € I. Then
icl
A; is a bounded subset of X; from a bove by u; , Vi € I. Then \/(\;)) #dVie Il Let k; € \V(\;) Vielso
that (k;)icr € V(A). Hence from Theorem 2.2, [] X;.is bounded complete domain.
iel
Note 2.3.We refere that Theorem 2.3 is a generalization of the corresponding result in Proposition 1.4.
(Proposition 5.2.4 [5]).

3. Finitely complete continuous information system and bounded complete do-
main continuous information system

Definition 3.1. An continuous information system (X, <) is finitely complete iff X is upper cone, and

Vx,y € X, ub({z,y}) is an upper cone.

One can easily deduce that any Finitely complete continuous information system is a bounded complete

continuous information system.

Theorem 3.1. For a continuous information system (X, <), the following statements are equivalent:
(1) X is finitley complete continuous information system;
(2) X has a least element and Vz,y € X, \/({z,y}) # ¢;
(3) If A is a finite subset of X, then\/()\) # ¢; and
(4) If A is a finite subset of X, then ub()) is an upper cone.
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Proof (1) = (2) : Since X is an upper cone, and 3 a € X s.t., T a = X. So, a € le(X).let z,y €
X. Then 3 z € ub({z,y}) s.t. T 2z € ub({z,y}). So, z € V({=z,y});

(2) = (3) : ¢ is a finite set, Since 3 x € le(X), then I = € \/(¢). Let A = {x1,22,23,....., 2, }, 1€, Ais a
finite set. Now, A1 2 = {x1, 22}, then Juz 2 € \/(A1,2). Put A1 23 = {u1,2,23} so that Jui 23 € \/(A1,2,3).We
,,,,,,,, n—1,Tn} so that 31 € \/(u). Then [ € ub()\). Let
m € ub(\). one can deduce that | < m. Then [ € \/(A).

(3) = (4) : Let A be a finite subset of X, then \/(\) = ¢. i.e., T € le(ub(N)) so that 11 = ub(N\); i.e.,

ub(\) is an upper cone;

can proceed until consider the set p = {uj 23

(4) = (1) : Since ¢ is a finite set, and X = ub(¢), then A) is an upper cone. For every {x,y} € X, the
set {x,y} is finite, then ub({z,y}) is an upper cone.

Note 3.1.We refere that Theorem 3.1 is a generalization of the corresponding result in Proposition 1.5
(Proposition 5.3.1 [5]).

Definition 3.2. An continuous information system (X, <) is complete domain iff X is finitely complete

and domain.

Theorem 3.2. For a continuous information system (X, <), the following statements are equivalent:
(1) X is complete domain;

(2) X is bounded complete domain with la(X) # ¢;

(3) If A is a finite subset of X, then/\ () # ¢; and

(4) If X is a finite subset of X, then\/()\) # ¢; and

(5) If A is a finite subset of X or a directed subset of X, then \/(\) # ¢.

Proof (1) = (2) : It is clear that any complete domain is bounded complete domain. Since V z,y €
X. ub({z,y}) is an upper cone so that ub({z,y}) # ¢. Then X is directed which imolies that la(X) =
VO #

(2) = (3) : Let X be a finite subset of X. First, if A = ¢, then Ib(¢). Since le(X) # ¢, then 3 I
A(@). Secound, if A # @, then from Theorem 2.1(6) A(¢) # ¢.

(3) = (4) : Let A be a finite subset of X, Since A(¢) = ¢. i.e., I 1 € la(N) so that every subset of X is
bounded from above. From Lemma 2.1, \/(\) # ¢;

(4) = (5) : Obvious; and

(5) = (1) : Since for every directed subset A of X, \/(A\) # ¢, then X is a continuous information system.

m

From Theorem 3.1(3), X is a finitely complete continuous information system.

Note 3.2.We refere that Theorem 3.2 is a generalization of the corresponding result in Proposition 1.6
(Proposition 5.3.2 [5]).

4. Finitarily complete continuous information system and compactly complete
continuous information system
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Definition 4.1. Let (X, <) be a continuous information system. A subset A of X is called finitary iff J.a
finite subset F' of A with A C 1 (F)

Theorem 4.1.Let (X, <) be a continuous information system. and let {\; : 4 € {1,2,3,.....,n}} be a family
of finitary subset of X. . Then Uj = 1"); is a finitary subset.

Proof Since Vi€ {1,2,3,.....,n}, 3 a finite subset K; s.t., K; C \; C 1 (K;), then
Uit Ko € Ujoy i € Ujzy 1K) €1 U= (K;). Since Uj_, K; is finite, then it is clear that
Uj=1 A: is finitary.

Definition 4.2. A continuous information system. (X, <) is called finitarily complete iff X is called finitary,
Ve,y € X, ub({z,y}) is finitary.

Theorem 4.2. For a continuous information system (X, <), the following statements are equivalent:
(1) X is finitarily complete;
(2) X is finitary and if A and p are finitary upper sets, then A N p is finitary;
n
(3) If Aq,y e , A, are finitary subsets, then [ ); is finitary;
(4)

i=1
4) If 11 is a finite subset of X, then ub(y) is finitary.

Proof (1) = (2):Ifis finitarily complete, then X is finitary. If X is finitary upper set, then there exists a
finite set F; C A s.t., A C 1 (F1) and T A C A Hence A = 1 (Fy) and if p is finitary upper set, then there
exists a finite set Fy C g s.t., p C 7 (Fz) and T p C p. Hence p = 1 (Fy). Thus
ANp=TFEI)NT(FE)= (U TN (U 1b) = U (TaN1b),ie, AN pis a finite union of
beF,

acFy a€EF,, bEFs
finitary sets. So that A N p is a finitary;

(2) = (3) : By indication. The empty intersection is X;
(3) = (4) : If p is a finite, then ub(u) = (U T e). upper cones are finitary;
ecB
(4) = (1) : X is the set of upper bounds of ¢, and T =[] T y is the set of upper bounds of {x,y}.

Note 4.1.We refere that Theorem 4.2 is a generalization of the corresponding result in Proposition 1.7.
(Proposition 5.4.1 [5]).

Theorem 4.3. Let (X, <) be a continuous information system, then;

(1) Every finite continuous information system is finitarily complete; and

(2) Every bounded complete continuous information system is finitarily complete continuous information
system.

Proof Follow directly from Theorem 2.2 and the fact all finite sets are finitary.

Note 4.2.We refere that Theorem 4.3 is a generalization of the corresponding result in Proposition 1.8.
(Proposition 5.4.2 [5]).
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Theorem 4.4. Let (X, <) be a continuous information system. If X and Y are finitarily complete, then
X XY sois.

Proof Product of finiary sets are finitary. Hence X x Y is finitary. furthermore,

T (@nL,y) N T (r2,92) = (Tzix Ty) ) (Taax Ty2) =T zi() Tyr) x (T22() 1 y2) holds.

The final outcome is finitary as product of finitary sets.

Note 4.3.We refere that Theorem 4.4 is a generalization of the corresponding result in Proposition 1.9.
(Proposition 5.4.3 [5]).

Definition 4.3. Let (X, <,0) be a topological continuous information system. A subset A of X is called
strongly compact V () € d s.t., A C (), 3 a finitary subset F with A C F C ().

Theorem 4.5. Let (X, <,4) be a topological continuous information system such that each member of § is

an upper subset. If a subset A of X is strongly compact, then X\ is compact.

Proof Let U be an open cover of A\, i.e, AC |J pand U C 4. Put |J p=G. Then A C G C 4. Since A
pel pnelu
of X is strongly compact, then there exists a finitary subset K of G s.t., A C K C G so that there exists

a finite subset F of K s.t., K C 1 (F), Then V2 € F, 3 B, €U s.t., x € B, so that FF C |J B, so that
zEF
ACKCT(F)C1(U Bz)= U B:. Hence X is compact.
zEF z€eF
Corollary 4.1. (1) Let 0 4, is Alexandroff topology induced by " <, let A of X is strongly compact, then
A is compact,

(2) Let 0g is Scott- topology induced by  <’, let A of X is strongly compact, then A is compact

Theorem 4.6. Let (X, <, ) be a topological continuous information and let {\; : i € {1,2,3,.....,n}} be a

strongly compact subsets of X. Then (J ); is strongly compact subsets of X.
i=1
Proof Let O €dst., UM C(O. Then Vi e I, 3 a finitary subset K; s.t. \; C K; € O so that
i=1
U M C U K; €O. From Theorem 4.1 |J K; is finitary, then
i=1 i=1 i=1

1=

n
A; is strongly compact.
i=1
Note 4.4.We refere that Theorem 4.6 is a generalization of the corresponding result in Proposition 1.10.
(Proposition 4.7.4 [5]).

Definition 4.4. Let (X, <,0) be a topological continuous information system. A subset A of X is called
strongly compact complete continuous information system iff X is strongly compact and let V z,y €

X, ub({z,y}) is strongly compact.
Theorem 4.7. Let (X, <,0) be a continuous information system, If

(1) X is strongly compactly complete; and

(2) X is finitary and the intersection of two finitary upper sets is strongly compact. Then
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(i) (1) =(2),

(ii) If <’ is reflexive, (2) = (1).

Proof (i) Since X is strongly compac and open, then there exists a finitary g of X st. X C p C X
so that X is is finitary. Let A and p bbe two finitary upper sets. Then there are finite sets E and F s.t.
ACT(E)CTAN)C dand pCT(F)CT () C p.SoACT(E)and p C T (F). Now AnpC 1T (E)N T

(F)= U (TeN7T/) so that, from Theorem 4.6, AN u is strongly compact.
ecE, feF
(ii) Since X is finitary and the only open set containing X , then X is strongly compact. Let z,y €

X, since ' <'is reflexive, V z € X, | z is finitary and since ’ <’transitive, then T z is upper set. Hence

TN Ty is strongly compact.

Note 4.4.We refere that Theorem 4.7 is a generalization of the corresponding result in Proposition 1.11.(Propo-

sition 5.5.1 [5]).

Definition 4.5. Let (X, <,d) be a topological continuous information system. X is called compactly

complete iff X is compact and let V z,y € X, ub({z,y}) is compact.

Definition 4.6. Let (X,<,d) be a topological continuous information system. We say that ¢ has the
property F' iff every compact open set in (X,0) is finitary.

Example 4.1 From Proposition 1.5 (Proposition 4.6.8 [5]).In (X, <,ds) where X is a domain. and dg is
Scott-topology induced by ' <’ , g has the property F.

Theorem 4.8. Let (X, <,0) be a continuous information system, If
(1) X is compactly complete; and
(2) X is finitary and the intersection of two finitary upper sets is compact. Then
(i) If 6 has the property F, (1) = (2), and
(ii) If 7 <’ is reflexive, and each member of § is upper set, then (2) = (1).

Proof (i) Since ¢ has the property F, then X is finitary. Let U and V be two finitary upper sets. Then
there are finite sets Eand M st. UCT(E)CT(U)C Uand VCT(M)CT(V)C V.So, SoUC 1T (E)

and VC T (M).NowUNV CT(E)N T(M)= U (TeTm)sothat UNV is compact.because a
ecE, meM
finite union of comact subset is compact.

(ii) Since X is finitary , then X is strongly compact. From Theorem 4.5, X is compact. since ' <’is
reflexive, then V ¢ € X, x € T = so that T x is finitary. Furthermore V x € X, T x is upper set. Hence
Vz, ye X, TxN Ty iscompact.

5- Conclusion

We have done the research tasks such that the correspoding results of completeness properties in R. Heckmann

theorems [5], are strengthen by our results.Also, we can give open problem to the researchers if can get our results
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if a binary relation "<’ bea binary relation set on X # ¢ have one only condition on Definition 1.2.
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