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____________________________________________________________________________________________________________ 

ABSTRACT---- In day to day problems, incomplete information due to unknown values in data is the cause of the loss 

of information which leads to uncertainly, ambiguity and vagueness. There are many reasons for unknown values in 

data, like errors in data collection, lack of data information, inappropriate technique and illegibility of data which cause 

incompleteness in data. Thus, to estimate the unknown values in data of various information systems is an important 

area of research. In this communication, the definitions of incomplete Fuzzy soft and interval-valued fuzzy soft matrices 

are given with application in numerical problems. An algorithm is proposed for unknown values estimation in an 

incomplete fuzzy soft matrix and applied in solving a numerical problem. An application of incomplete fuzzy soft matrix 

after inserting the unknown values in dimension reduction is studied. The unknown values in the incomplete interval-

valued fuzzy soft matrix are also estimated and applied in multi-criteria decision-making method.     

Keywords and Phrases----  Fuzzy soft set, Interval-valued Fuzzy soft set, Estimation, Fuzzy Soft Matrices and Dimension 

Reduction 

_________________________________________________________________________________________________  

1. INTRODUCTION 

Zadeh [27] defined a fuzzy set to describe the uncertainty due to ambiguity and impreciseness in the environment of 

vagueness and applied to solve the complex real life problems. Subsequently, a number of generalizations of the fuzzy set 

were developed applied in many fields fo science and engineering. In view of the fact that fuzzy set has inadequacy of 

parameterization, Molodtsov [19] evolved soft set theory and that is considered a better theory in comparison to any other 

theory, like fuzzy set, rough set, and statistical approach, to deal with parametric data.  
  
Theoretical as well as applied research in soft set theory has attracted the attention of many scientists from different fields. 

Maji et al. [21] applied soft set theory in decision-making problems. Later on, their work was improved by Chen et al. [1], 

Kong et al. [14], and Ma et al.[23] sequentially. Besides these developments many other researchers, namely Celik and 

Yamak [4], Jun et al. [12], Kalaichelvi and Malini [17], Kalayathankal and Singh [16],  Tanay and Kandemir [25]  used 

soft set hybridization with  fuzzy set theory for handling the uncertainty in vagueness of data related to daily life. 

  

The theory of soft set was extended by Maji et al. [20, 22] to fuzzy soft set theory. A computational tool based on a fuzzy 

soft set was introduced by Kong et al. [15]. That improved the traditional decision-making process and proved more 

convenient in case attributes were changed across the decision process. The theory of soft and fuzzy soft sets has proved 

useful in many fields such as forecasting, role mining, data analysis, simulation, and evaluation of sound quality.  
  
There is a very convenient representation of soft and fuzzy soft sets in the form of Matrices. The advantage of representing 

a fuzzy soft set in the matrix form is that the data is easily stored and interpreted in a computer. Kandasamy et al. [13] 

initially introduced the concept of a fuzzy matrix.  Cayman and Enginoglo [2] defined a soft matrix and multiplication of 

soft matrices. They further used the multiplication of soft matrices to describe a soft max-min decision-making method. 

Hooda and Jain [8] defined and characterized the information measures on fuzzy matrices and described their binary 

relations. Fuzzy soft matrix and its application in decision-making problems were introduced and studied by Cayman et al. 

[3].  
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It is easy to handle matrices when complete information is given, but the problem arises when some of the data values are 

missing due to mishandling, inaccurate measurement, or inappropriate tools for collecting information, etc. This leads to 

more uncertainty and ambiguity. Missing data occurs almost in all scientific fields, even in well-designed and controlled 

studies. Due to missing data, the statistical power of the study is reduced that leads to biased estimation and invalid 

conclusion. Thus, it becomes the utmost essential to estimate the unknown values in data instead of ignoring them. 
  
A data analysis approach for soft sets with incomplete information was described by Zou and Xiao[28]  . Their method is 

based on a weighted average of all possible choice values of the objects. The weight of each possible choice value from 

the probability of belonging of an object with a parameter is calculated. This method to compute the summation of all 

parameters’ values for each object has a drawback as the unknown entries remain unknown. They also described an average 

probability method to predict the missing data in a fuzzy soft set. Actually, that method is based on the probability of an 

object belonging to a parameter, which is considered as the degree of belongingness of the object to that parameter. 
  
 Deng and Wang [5] defined an object parameter approach to estimate the missing values in the incomplete fuzzy soft set. 

In that technique, complete information from the relationship among various objects of a certain parameter and among the 

values of different parameters about a concerned object was considered. The new concept of complete distance between 

two objects and relative dominance degree between two parameters was introduced to explore the unknown information 

in a more precise and reasonable way.  
  
Later on, Dong and Xiao[6]  defined Dempster-Shafer's fuzzy soft set by combining  Dempster-Shafer theory and  fuzzy 

soft set. A decision-making algorithm for the incomplete fuzzy soft set was also described. A data filling approach using 

the relations between parameters and the association degree to measure the relation was explained by Qin et al.[24].   

However, Khan et al. [18] also defined another data filling approach for unknown values estimation in soft sets. They 

mainly focussed on the reliability of association between parameters instead of probabilities.  
  
 Recently, Hooda and Barak [10] described an algorithm and applied  in the estimation of the missing data in the design of 

experiments and contingency table. They have also studied the estimation of missing values in fuzzy matrices and extended 

application to interval-valued fuzzy matrices (refer to Hooda and Barak [11]). An algorithmic approach for predicting 

unknown information in incomplete fuzzy soft and interval-valued fuzzy soft sets was also given by Surjit et al. [7]. Wang 

et al. [26] also studied incomplete fuzzy soft set and its application to decision making.  
  
In the present communication, a data filling approach to estimate unknown values in fuzzy soft and interval-valued fuzzy 

soft matrices is described and its application in numerical problems is illustrated. In section 2, some basic concepts used in 

the development of the paper were defined with examples. In section 3, an algorithm for unknown values estimation for a 

fuzzy soft matrix is proposed and illustrated with an example. In section 4, the application of fuzzy soft matrix in data 

dimension reduction is explained. An algorithm is proposed in section 5 for estimation of unknown values in an incomplete 

interval-valued fuzzy soft matrix and solved a numerical problem for illustration. A decision making method is also 

described by using of interval-valued fuzzy soft matrix in section 6. Discussion and conclusion are given in section 7 and 

the references are enumerated at the end of the paper. 

2. PRELIMINARIES 
In this section some basic concept which are used further for the development of the paper are defined. 

 

Definition 2.1[9]: Fuzzy Set 

Let X is a non-empty set of universe, a function  𝜇𝐴(𝑥): 𝑋 → [0, 1] defines a fuzzy set A on X and usually written as 

𝐴 = {(𝑥𝑖 , 𝜇𝐴(𝑥𝑖)): 𝜇𝐴(𝑥𝑖) ∈ [0, 1]; ∀ 𝑥𝑖 ∈ 𝑋}, where 

 𝜇𝐴(𝑥𝑖) is called membership function which satisfies the following conditions: 

𝜇𝐴(𝑥𝑖) = {

0,                        𝑖𝑓 𝑥𝑖 ∉ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦
1,                        𝑖𝑓 𝑥𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

0.5,    𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 max 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑥𝑖 ∈ 𝐴 𝑜𝑟 𝑥𝑖 ∉ 𝐴
 

 

Definition 2.2[21]: Soft Set 

Let us consider ‘U’ as the universal set and T be the parametric set, then the pair (𝜋, 𝑇) is defined as soft set over U iff 𝜋 

is a function of T to the power set of U i.e.   
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 𝜋 ∶ 𝑇 → 𝑃(𝑈) 

Example2.2. Let 𝑈 = (𝑡1, 𝑡2, 𝑡3, 𝑡4)  be the set of four televisions and ‘E’ be the parametric set namely, 𝐸 =

(𝑒1(𝑐𝑙𝑒𝑎𝑟 𝑠𝑐𝑟𝑒𝑒𝑛), 𝑒2(𝑐ℎ𝑒𝑎𝑝), 𝑒3(𝑔𝑜𝑜𝑑 𝑏𝑜𝑑𝑦)). Then, the soft sets (𝜋, 𝐸) over U is given by 

(π, E) = { 𝐹(𝑒1) = (𝑡1, 𝑡4), 𝐹(𝑒2) = (𝑡2, 𝑡3), 𝐹(𝑒3) = (𝑡1, 𝑡3)} 

Table 1: Tabular Representation of Soft Set 

𝑼/𝑬 𝒆𝟏 𝒆𝟐 𝒆𝟑 

𝒕𝟏 1 0 1 

𝒕𝟐 0 1 0 

𝒕𝟑 0 1 1 

𝒕𝟒 1 0 0 

 

Definition 2.3[7]: Fuzzy Soft Set 

Let X is a set of universe under discussion; E is the set of parameters and A⊆ E. Let F(X) be the set of all fuzzy subsets of 

X, then the pair (F, A) is called fuzzy soft set of X, where F is a mapping from A to F(X). 

 

Example2.3. Let us consider C = {𝑐1, 𝑐2, 𝑐3} be the set of three courses and E = {𝑒1 = 𝑗𝑜𝑏 𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑, 𝑒2 = 𝑎𝑓𝑓𝑖𝑙𝑎𝑡𝑒𝑑, 𝑒3 =

𝑐ℎ𝑒𝑎𝑝𝑒𝑟} be the set of parameters and let B ={𝑒1, 𝑒2} ⊂ 𝐸, then 

                           (F, B) ={
𝐹(𝑒1) = {𝑐1/0.5, 𝑐2/0.9, 𝑐3/0.7

𝐹(𝑒2) = {𝑐1/0.6, 𝑐2/0.8, 𝑐3/0.4
; 

(F, B) is a fuzzy soft set over C to give the “quality of the courses”. 

 

Definition 2.4[11]: Fuzzy Matrix 

If a matrix holds an additional property such that all entries belong to closed unit interval  

[0, 1], then it is called Fuzzy Matrix. 

 

Example 2.4 

0.2 0.6 0.5 

0.4 0 0.9 

0.3 0.7 1 

0.1 0.2 0.8 

is a fuzzy matrix of order 4 × 3.  

 

Definition 2.5[3]: Fuzzy Soft Matrix 

 

Let 𝑅𝑆 ∈ 𝐹𝑆(𝑈). Then a fuzzy relation form is defined by  

𝑅𝑆 = {(𝜇𝑅𝑆
(𝑢, 𝑥)/(𝑢, 𝑥): (𝑢, 𝑥)  ∈ 𝑈 × 𝐸}, 

where U is the universal set, E is the set of parameters, S is the subset of E and the membership function 𝜇𝑅𝑆
 is given by 

𝜇𝑅𝑆
: 𝑈 × 𝐸 → [0,1] 𝑖. 𝑒. 𝜇𝑅𝑆

(𝑢, 𝑥) = 𝜇𝛾𝑠(𝑥)(𝑢). 

         

 If 𝑎𝑖𝑗 = 𝜇𝑅𝑆
(𝑢𝑖, 𝑥𝑗),  for each i and j, then a fuzzy soft matrix is defined as  

             [𝑎𝑖𝑗]
𝑚×𝑛

= [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] , 

and is called  𝑚 × 𝑛 fuzzy soft matrix of the fuzzy set 𝑅𝑆 over U. 
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Definition 2.6[26]: Incomplete Fuzzy Soft Set 

If there are missing values in tabular form of fuzzy soft set, it is called as incomplete fuzzy soft set and unknown values 

are marked as the sign" ∗ ".  

 

Example2.5. Let 𝑈 = (𝑢𝑖𝑗)6×5 is an IFSS containing six objects 𝐻 = (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6) and five parameters 𝐸 =

(𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5). The matrix representation of the incomplete fuzzy soft set is given in table 2. 

 

Table 2: Incomplete Fuzzy Soft Matrix 

𝑼/𝑬 
𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 

𝒖𝟏 0.2 0.6 0.2 0.4 0.3 

𝒖𝟐 ∗ 0.4 0.3 0.3 0.6 

𝒖𝟑 0.7 ∗ 0.4 0.5 0.1 

𝒖𝟒 0.7 0.3 0.2 0.2 ∗ 

𝒖𝟓 0.4 ∗ 0.3 ∗ 0.3 

𝒖𝟔 0.8 0.2 0.1 0.1 0.8 

 

Definition 2.7[11]: Interval Valued Fuzzy Soft Matrix 

An interval valued fuzzy soft matrix of order 𝑚 × 𝑛 is defined as 𝐻 = (ℎ𝑖𝑗)𝑚×𝑛, where ℎ𝑖𝑗 = [ℎ𝑖𝑗
−, ℎ𝑖𝑗

+] is (𝑖, 𝑗)𝑡ℎ element 

of 𝐻 is given as subinterval of [0, 1] representing a value of an object corresponding to another object arranged in a 

rectangular form.  

Example2.6. Consider an interval valued fuzzy soft matrix H given below:  

𝐻 = [

[0.5, 0.7] [0.3, 0.7] [0.1, 0.2] [0.1, 0.3]

[0.7, 0.9] [0.2, 0.6] [0.5, 0.9] [0.2, 0.7]

[0.3, 0.5] [0.4, 0.6] [0.6, 0.7] [0.6, 0.8]
] 

3. ALGORITHM FOR UNKNOWN VALUES ESTIMATION IN INCOMPLETE FUZZY SOFT 

MATRIX(IFSM) 
 

Let 𝑈 =  (𝐻, 𝐸) = (𝑢𝑖𝑗)𝑚×𝑛, 𝑖 = 1 𝑡𝑜 𝑚, 𝑗 = 1 𝑡𝑜 𝑛 be an incomplete fuzzy soft set, where 

𝐻 = (ℎ1, ℎ2, … , ℎ𝑚)be the set of objects and 𝐸 = (𝑒1, 𝑒2, … , 𝑒𝑛)be the set of parameters. The missing entries are denoted 

by sign ‘*’ in matrix representation of U. Then, to estimate missing values, the following algorithm is applied: 

 

1. Firstly, calculate mean value 𝑋𝐽 for each parameter 𝑒𝑗; 𝑗 = 1 𝑡𝑜 𝑛 as  

𝑋𝑗 = ∑ 𝑢𝑖𝑗/|𝐻𝑗|𝑛
𝑖=1 , where𝐻𝑗 = {𝑖/𝑢𝑖𝑗 ≠∗, 1 ≤ 𝑖 ≤ 𝑚}. 

2. Compute average distance denoted by 𝐷𝑎𝑣𝑔(𝑋𝑗) for each entry 𝑢𝑖𝑗 ; 𝑖 = 1 𝑡𝑜 𝑚, 𝑗 = 1 𝑡𝑜 𝑛 as(𝑋𝑗) =

∑ |𝑋𝑗 − 𝑢𝑖𝑗|/|𝐻𝑗|𝑚
𝑖=1  ∀ 𝑗, 

where 𝐻𝑗 = {𝑖/𝑢𝑖𝑗 ≠∗, 1 ≤ 𝑖 ≤ 𝑚}. 

3. Next compute distance deviation{𝑑𝑋𝑗
+ , 𝑑𝑋𝑗

−} on either side of the mean as 

𝑑𝑋𝑗
+ = 𝑋𝑗 + 𝐷𝑎𝑣𝑔(𝑋𝑗) 

𝑑𝑋𝑗
− = 𝑋𝑗 − 𝐷𝑎𝑣𝑔(𝑋𝑗). 

4. Compare 𝑢𝑖𝑗 , 𝑗 = 1 𝑡𝑜 𝑛 for each ℎ𝑖 , 𝑖 = 1 𝑡𝑜 𝑚 with mean value 𝑋𝑗 , 𝑗 = 1 𝑡𝑜 𝑛, 𝑢𝑖𝑗 ≠∗, 1 ≤ 𝑖 ≤ 𝑚. Let 

𝑛𝐿 𝑎𝑛𝑑 𝑛𝐺 denotes the number of count for which 𝑢𝑖𝑗 < 𝑋𝑗  𝑎𝑛𝑑 𝑢𝑖𝑗 ≥ 𝑋𝑗 respectively for corresponding 

parameter 𝑒𝑗 , 𝑗 = 1 𝑡𝑜 𝑛. 

5. By using 𝑛𝐿 𝑎𝑛𝑑 𝑛𝐺 calculate the probabilistic weights 𝑤𝐿  𝑎𝑛𝑑 𝑤𝐺  for each object ℎ𝑖 , 𝑖 = 1 𝑡𝑜 𝑚 respectively as  

𝑤𝐿𝑖
= 𝑛𝐿/(𝑛𝐿 + 𝑛𝐺) 
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𝑤𝐺𝑖
= 𝑛𝐺/(𝑛𝐿 + 𝑛𝐺). 

 

6. The missing entries for each parameters 𝑒𝑗 are computed as  

𝑢𝑖𝑗 = (𝑑𝑋𝑗
+ × 𝑤𝐺𝑖

) + (𝑑𝑋𝑗
− × 𝑤𝐿𝑖

), 

where 𝑢𝑖𝑗 =∗, 𝑖 = 1 𝑡𝑜 𝑚, 𝑗 = 1 𝑡𝑜 𝑛. 

 

3.1  Illustration 

      

Let 𝑈 = (𝑢𝑖𝑗)is the FSS containing 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6}, the set of six houses and the set of parameter is given 

by 𝐸 = {𝑒1 = 𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒, 𝑒2 = 𝑏𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙, 𝑒3 = 𝑤𝑜𝑜𝑑𝑒𝑛, 𝑒4 = 𝑐ℎ𝑒𝑎𝑝, 𝑒5 = 𝑖𝑛 𝑔𝑟𝑒𝑒𝑛 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔, 𝑒6 =

𝑚𝑜𝑑𝑒𝑟𝑛, 𝑒7 = 𝑖𝑛 𝑔𝑜𝑜𝑑 𝑟𝑒𝑝𝑎𝑖𝑟, 𝑒8 = 𝑖𝑛 𝑏𝑎𝑑 𝑟𝑒𝑝𝑎𝑖𝑟}. Let Mr X is interested in buying a house on the basis of his choice 

of parameters given by 𝑃 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}. The data is arranged in Matrix form as given in table 3 and it found that 

some of the entries are missing. So, it becomes necessary to estimate these entries before making decision about the buying 

of house for Mr X.  

 

The above problem can be written in an Incomplete Fuzzy Soft Matrix as follows: 

                                             

Table 3: Incomplete Fuzzy Soft Matrix 

 

𝑼/𝑬 
𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 

𝒉𝟏 0.1 0.5 0.4 0.4 0.3 

𝒉𝟐 ∗ 0.5 0.2 0.3 0.6 

𝒉𝟑 0.1 ∗ 0.3 0.5 0.1 

𝒉𝟒 0.7 0.2 0.2 0.2 0.3 

𝒉𝟓  0.2 0.5 0.3 ∗ 0.3 

𝒉𝟔 0.9 0.2 0.1 0.1 0.8 

 

The entries 𝑢21, 𝑢32, 𝑢54 are the missing denoted by ‘*’ and are estimated by using algorithm 3.1 as described below: 

1. Mean value 𝑋1 for parameter 𝑒1 is given by 

𝑋1 = (0.1 + 0.1 + 0.7 + 0.2 + 0.9)/5 =  0.4. Similarly, 𝑋2 = 0.38, 𝑋3 = 0.25, 𝑋4 = 0.3 𝑎𝑛𝑑  𝑋5 = 0.4. 

2. Average distance 𝐷𝑎𝑣𝑔(𝑋1) is computed as  

𝐷𝑎𝑣𝑔(𝑋1) = (|0.4 − 0.1| + |0.4 − 0.1| + |0.4 − 0.7| + |0.4 − 0.2| + |0.4 − 0.9|)/5 = (0.3 + 0.3 + 0.3 + 0.2 + 0.5)/5

= 0.32 

Similarly, remaining average distances are 𝐷𝑎𝑣𝑔(𝑋2) = 0.144, 𝐷𝑎𝑣𝑔(𝑋3) = 0.1, 𝐷𝑎𝑣𝑔(𝑋4) = 0.12 𝑎𝑛𝑑 𝐷𝑎𝑣𝑔(𝑋5) =

0.24. 
3. Now, the distance deviations are given below: 

𝑑𝑋1
+ = 0.4 + 0.32 = 0.72, 𝑑𝑋1

− = 0.4 − 0.32 = 0.08, 

𝑑𝑋2
+ = 0.38 + 0.144 = 0.524, 𝑑𝑋2

− = 0.38 − 0.144 = 0.236, 

𝑑𝑋3
+ = 0.25 + 0.10 = 0.35, 𝑑𝑋3

− = 0.25 − 0.10 = 0.15, 

𝑑𝑋4
+ = 0.3 + 0.12 = 0.42, 𝑑𝑋4

− = 0.3 − 0.12 = 0.18, 

𝑑𝑋5
+ = 0.4 + 0.24 = 0.64, 𝑑𝑋5

− = 0.4 − 0.24 = 0.16. 

4. Next 𝑛𝐿𝑎𝑛𝑑 𝑛𝐺 for corresponding parameter 𝑒𝑗 are:  

In case of object ℎ2 for   𝑒2, 𝑢22 > 𝑋2(0.5 > 0.38), 𝑓𝑜𝑟 𝑒3,  𝑢23 < 𝑋3(0.2 < 0.25), 𝑓𝑜𝑟 𝑒4, 𝑢24 = 𝑋4(0.3 = 0.3),

𝑓𝑜𝑟 𝑒5, 𝑢25 > 𝑋5(0.6 > 0.4).  

Hence, for ℎ2𝑛𝐿 = 1 𝑎𝑛𝑑 𝑛𝐺 = 3, for object ℎ3, 𝑛𝐿 = 2, 𝑛𝐺 = 2 and 

 for ℎ5, 𝑛𝐿 = 2 , 𝑛𝐺 = 2. 

5. Probabilistic weights 𝑤𝐿2
𝑎𝑛𝑑 𝑤𝐺2

for object ℎ2 are given as 

𝑤𝐿2
= 1/(1 + 3) = 1/4, 𝑤𝐺2

= 3/(1 + 3) = 3/4,  
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Thus, for object ℎ3, 𝑤𝐿3
= 2/(2 + 2) = 2/4, 𝑤𝐺3

= 2/(2 + 2) = 2/4,  

and for object ℎ5, 𝑤𝐿5
= 2/(2 + 2) = 2/4, 𝑤𝐺5

= 2/(2 + 2) = 2/4.  

6. Finally, the missing entries are computed as 

𝑢21 = (0.72 × 3/4) + (0.8 × 1/4) = 0.74, 

𝑢32 = (0.524 × 1/2) + (0.236 × 1/2) = 0.38, 

𝑢54 = (0.42 × 1/2) + (0.18 × 1/2) = 0.30. 

Hence, the missing entries are 𝑢21 = 0.74, 𝑢32 = 0.38, 𝑢54 = 0.30. 

 

After substituting the estimated values in table 3, we get fuzzy soft matrix as given below 

 

Table 4: Fuzzy Soft Matrix 

𝑼/𝑬 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 

𝒉𝟏 0.1 0.5 0.4 0.4 0.3 

𝒉𝟐 𝟎. 𝟕𝟒 0.5 0.2 0.3 0.6 

𝒉𝟑 0.1 𝟎. 𝟑𝟖 0.3 0.5 0.1 

𝒉𝟒 0.7 0.2 0.2 0.2 0.3 

𝒉𝟓  0.2 0.5 0.3 𝟎. 𝟑𝟎 0.3 

𝒉𝟔 0.9 0.2 0.1 0.1 0.8 

 

4. DIMENSION REDUCTION OF THE DATA 

Here application of FSM in dimension reduction of the data arranged in the table 4 is explained. Firstly, we describe an 

algorithm for data dimension reduction  

 

4.1 Algorithm  

The following steps are described which are involve in algorithm for dimension reduction: 

1. Input Fuzzy Soft Matrix (𝐻, 𝐸). 

2. Calculate oriented-object grade𝑂𝑖 = (∑ 𝑢𝑖𝑗𝑗 )/|𝐸|. 

3. Calculate oriented-parameter grade𝐸𝑗 = (∑ 𝑢𝑖𝑗𝑖 )/|𝑈|. 

4. Calculate threshold value 𝑇 = (∑ 𝑢𝑖𝑗𝑖𝑗 )/(|𝑈| × |𝐸|). 

5. Remove those rows for which 𝑂𝑖 < 𝑇 and those column for which 𝐸𝑗 > 𝑇. 

6.  New matrix is the desire dimensionality reduced matrix. 

4.2 Application of Algorithm  

Considering the fuzzy soft matrix given in Table 4 and applying the algorithm 4.1, the oriented-object grade 𝑂𝑖  and 

oriented-parameter grade 𝐸𝑗 are calculated as given in Table 5. 

Table 5: Oriented Object and Parameter Grades 

𝑼/𝑬 
𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 𝑶𝒊 

𝒉𝟏 0.1 0.5 0.4 0.4 0.3 0.34 

𝒉𝟐 𝟎. 𝟕𝟒 0.5 0.2 0.3 0.6 0.46 

𝒉𝟑 0.1 𝟎. 𝟑𝟖 0.3 0.5 0.1 0.276 

𝒉𝟒 0.7 0.2 0.2 0.2 0.3 0.32 

𝒉𝟓  0.2 0.5 0.3 𝟎. 𝟑𝟎 0.3 0.32 

𝒉𝟔 0.9 0.2 0.1 0.1 0.8 0.42 

𝑬𝒋 0.45 0.38 0.25 0.3 0.4  
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The threshold value 𝑇 = (∑ 𝑢𝑖𝑗𝑖𝑗 )/(|𝑈| × |𝐸|) is calculated which is 0.356. Now, remove those rows for which 𝑂𝑖 < 𝑇 

and those column for which𝐸𝑗 > 𝑇. The reduce matrix is given in table 6.  

 

 

Table 6: Reduced Fuzzy Soft Matrix 

𝑼/𝑬 
𝒆𝟑 𝒆𝟒 𝑶𝒊 

𝒉𝟐 0.2 0.3 0.46 

𝒉𝟔 0.1 0.1 0.42 

𝑬𝒋 0.25 0.3  

 

It may be noted that the data size is reduced by 86% approximately and the maximum object grade value is corresponding 

to the house 𝒉𝟐.Hence, Mr X will buy house  𝒉𝟐. 

 

5. ALGORITHM TO ESTIMATE MISSING VALUES IN INCOMPLETE INTERVAL VALUED 

FUZZY SOFT MATRIX  

In this section an algorithm for estimating missing values in an incomplete IVFSM is proposed and illustrated with an 

example. 

 

5.1 Steps of the Algorithm 

Let 𝑈 = (𝐻, 𝑃) = (𝑢𝑖𝑗
−, 𝑢𝑖𝑗

+)𝑚×𝑛 , 𝑖 = 1 𝑡𝑜 𝑚, 𝑗 = 1 𝑡𝑜 𝑛 be an incomplete interval valued fuzzy soft matrix, where 𝐻 be 

the set of ‘𝑚’objects and 𝐸 be the set of ‘𝑛’parameters. Each unknown value(𝑢𝑖𝑗
−, 𝑢𝑖𝑗

+)is denoted by “*”. Then steps of 

algorithm are given below: 

a. Calculate mean value 𝑋𝑗
− 𝑎𝑛𝑑 𝑋𝑗

+for lower and upper membership functions respectively for each parameter 

𝑒𝑗  , where, 𝑗 = 1 𝑡𝑜 𝑛 as 𝑋𝑗
− = ∑ 𝑢𝑖𝑗

−/|𝐻𝑖|𝑚
𝑖=1  and 𝑋𝑗

+ = ∑ 𝑢𝑖𝑗
+/|𝐻𝑖|𝑚

𝑖=1 , where 𝐻𝑖 = {𝑖/𝑢𝑖𝑗
− ≠∗, 𝑢𝑖𝑗

+ ≠∗, 1 ≤

𝑖 ≤ 𝑚}. 

b. Calculate average distance of 𝑢𝑖𝑗
− 𝑎𝑛𝑑 𝑢𝑖𝑗

+from respective mean 𝑋𝑗
−𝑎𝑛𝑑 𝑋𝑗

+, denoted by 

𝐷𝑎𝑣𝑔(𝑋𝑗
−) 𝑎𝑛𝑑 𝐷𝑎𝑣𝑔(𝑋𝑗

+), where 𝐷𝑎𝑣𝑔(𝑋𝑗
−) =  ∑ |𝑋𝑗

−𝑚
𝑖=1 − 𝑢𝑖𝑗

−|/|𝐻𝑖|and 𝐷𝑎𝑣𝑔(𝑋𝑗
+) =  ∑ |𝑋𝑗

+𝑚
𝑖=1 − 𝑢𝑖𝑗

+|/

|𝐻𝑖|.   

c. Calculate distance deviations {𝑑𝑙𝑌𝑗
−, 𝑑𝑙𝑌𝑗

+} 𝑎𝑛𝑑 {𝑑𝑢𝑌𝑗
−, 𝑑𝑢𝑌𝑗

+ } for lower and upper membership functions 

respectively from mean𝑋𝑗
− 𝑎𝑛𝑑 𝑋𝑗

+as 𝑑𝑙𝑌𝑗
− =  𝑋𝑗

− − 𝐷𝑎𝑣𝑔(𝑋𝑗
−), 𝑑𝑙𝑌𝑗

+ =  𝑋𝑗
− +  𝐷𝑎𝑣𝑔(𝑋𝑗

−), and𝑑𝑢𝑌𝑗
− =

 𝑋𝑗
+ − 𝐷𝑎𝑣𝑔(𝑋𝑗

+), 𝑑𝑢𝑌𝑗
+ =  𝑋𝑗

+ +  𝐷𝑎𝑣𝑔(𝑋𝑗
+). 

d. For each object  𝐻𝑖(𝑖 = 1 𝑡𝑜 𝑚), 𝑢𝑖𝑗
− 𝑎𝑛𝑑 𝑢𝑖𝑗

+  (𝑗 = 1 𝑡𝑜 𝑛) are compared with mean 𝑋𝑗
− 𝑎𝑛𝑑 𝑋𝑗

+respectively 

(𝑢𝑖𝑗
− ≠∗, 𝑢𝑖𝑗

+ ≠∗). Let 𝑛𝐿
− 𝑎𝑛𝑑 𝑛𝐺

−be the number of count for which 𝑢𝑖𝑗
− < 𝑋𝑗

− 𝑎𝑛𝑑  𝑢𝑖𝑗
−  ≥ 𝑋𝑗

−for 

corresponding parameter 𝑒𝑗(𝑗 = 1 𝑡𝑜 𝑛). Similarly,𝑛𝐿
+ 𝑎𝑛𝑑 𝑛𝐺

+be the number of count for which𝑢𝑖𝑗
+ <

𝑋𝑗
+ 𝑎𝑛𝑑  𝑢𝑖𝑗

+  ≥ 𝑋𝑗
+, respectively.  

e. Using (𝑛𝐿
− , 𝑛𝐺

−)and (𝑛𝐿
+, 𝑛𝐺

+)the probabilistic weight (𝑤𝐿𝑖
− , 𝑤𝐺𝑖

−)and (𝑤𝐿𝑖
+, 𝑤𝐺𝑖

+)of each object 

 𝐻𝑖(𝑖 = 1 𝑡𝑜 𝑚)are respectively given as 𝑤𝐿𝑖
− =  𝑛𝐿

−/(𝑛𝐿
− + 𝑛𝐺

−), 𝑤𝐺𝑖
− =  𝑛𝐺

−/(𝑛𝐿
− + 𝑛𝐺

−),  and𝑤𝐿𝑖
+ =

 𝑛𝐿
+/(𝑛𝐿

+ + 𝑛𝐺
+), 𝑤𝐺𝑖

+ =  𝑛𝐺
+/(𝑛𝐿

+ + 𝑛𝐺
+). 

f. The unknown data for parameter 𝑒𝑗 is computed as 𝑢𝑖𝑗
− = (𝑑𝑙𝑌𝑗

− × 𝑤𝐿𝑖
−) + (𝑑𝑙𝑌𝑗

+ × 𝑤𝐺𝑖
−) and𝑢𝑖𝑗

+ =

(𝑑𝑢𝑌𝑗
− × 𝑤𝐿𝑖

+) + (𝑑𝑢𝑌𝑗
+ × 𝑤𝐺𝑖

+),  where (𝑢𝑖𝑗
− 𝑎𝑛𝑑 𝑢𝑖𝑗

+)are unknown entries in IIVFSM (𝐻, 𝑃). 

 

5.1  An Example for Illustration  

Let us consider 𝑅 =  {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} the set of 5 robots and 𝑃 =

 {𝑒1(𝑙𝑜𝑎𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦), 𝑒2(𝑠𝑝𝑒𝑒𝑑), 𝑒3(𝑚𝑒𝑚𝑜𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦), 𝑒4(𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚)} be the set of parameters. An expert 

evaluates the performance of the robots ℎ𝑖(𝑖 = 1 𝑡𝑜 5)with respect to the parameter  𝑒𝑗(𝑗 = 1𝑡𝑜4) and arranged in the form 

of matrix. But it is found that some of the values are missing. Therefore, before selecting an optimum robot the missing 
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data need to be estimated. The data arranged in the form of incomplete matrix is known as incomplete IVFSM as given 

below in table 7: 

 

Table 7: Incomplete Interval Valued Fuzzy Soft Matrix 

𝑹/𝑷 
𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 

𝒉𝟏 [0.6, 0.8] ∗ [0.5, 0.7] [0.4, 0.5] 

𝒉𝟐 [0.2, 0.5] [0.7, 0.8] [0.4, 0.8] [0.6, 0.9] 

𝒉𝟑 [0.5, 0.7] [0.6, 0.8]  ∗ [0.8, 0.9] 

𝒉𝟒 [0.8, 0.9] [0.5, 0.8] [0.8, 0.9] [0.6, 0.7] 

𝒉𝟓  [0.7, 0.9] [0.6, 0.7] ∗ [0.5,0.7] 

 

Here the values (𝑢12
−, 𝑢12

+), (𝑢33
−, 𝑢33

+)and (𝑢53
−, 𝑢53

+)are missing, these values are estimated using the algorithm 5.1.  

a) Mean values for lower and upper membership function for parameter 𝑒1 are given by 𝑋1
− 𝑎𝑛𝑑 𝑋1

+ respectively as 

𝑋1
− = (0.6 + 0.2 + 0.5 + 0.8 + 0.7)/5 = 0.56 𝑎𝑛𝑑 𝑋1

+ = (0.8 + 0.5 + 0.7 + 0.9 + 0.9)/5 = 0.76. Similarly, for 

parameter 𝑒2, 𝑋2
− = 0.6, 𝑋2

+ = 0.78. 

For parameter 𝑒3, 𝑋3
− = 0.57, 𝑋3

+ = 0.8, 𝑓𝑜𝑟 𝑒4, 𝑋4
− = 0.58, 𝑋4

+ = 0.74. 

b) Average distances 𝐷𝑎𝑣𝑔(𝑋1
−) 𝑎𝑛𝑑 𝐷𝑎𝑣𝑔(𝑋1

+)are calculated as 

𝐷𝑎𝑣𝑔(𝑋1
−) = (|0.56 − 0.6| + |0.56 − 0.2| + |0.56 − 0.5| + |0.56 − 0.8| + |0.56 − 0.7|)/5

= (0.04 + 0.36 + 0.06 + 0.24 + 0.14)/5 = 0.17 

𝐷𝑎𝑣𝑔(𝑋1
+) = (|0.76 − 0.8| + |0.76 − 0.5| + |0.76 − 0.7| + |0.76 − 0.9| + |0.76 − 0.9|)/5

= (0.04 + 0.26 + 0.06 + 0.14 + 0.14)/5 = 0.13. 

Similarly, remaining average distances are given by 𝐷𝑎𝑣𝑔(𝑋2
−) = 0.05, 𝐷𝑎𝑣𝑔(𝑋2

+) = 0.035, 

𝐷𝑎𝑣𝑔(𝑋3
−) = 0.157, 𝐷𝑎𝑣𝑔(𝑋3

+) = 0.067 And 𝐷𝑎𝑣𝑔(𝑋4
−) =  0.104, 𝐷𝑎𝑣𝑔(𝑋4

+) = 0.128. 

c) Distance deviations{𝑑𝑙𝑌1
−, 𝑑𝑙𝑌1

+} 𝑎𝑛𝑑 {𝑑𝑢𝑌1
−, 𝑑𝑢𝑌1

+ }for lower and upper membership function from respective mean 

𝑋1
− 𝑎𝑛𝑑 𝑋1

+ are given below: 

{𝑑𝑙𝑌1
− = |0.56 − 0.17| = 0.39, 𝑑𝑙𝑌1

+ = |0.56 + 0.17| = 0.73} And 

{𝑑𝑢𝑌1
− = |0.76 − 0.13| = 0.63, 𝑑𝑢𝑌1

+ = |0.76 + 0.13| = 0.89}.  
Similarly, 

{(𝑑𝑙𝑌2
− = 0.55, 𝑑𝑙𝑌2

+ = 0.65), (𝑑𝑢𝑌2
− = 0.75, 𝑑𝑢𝑌2

+ = 0.82), (𝑑𝑙𝑌3
− = 0.41, 𝑑𝑙𝑌3

+ = 0.727), (𝑑𝑢𝑌3
− =

0.73, 𝑑𝑢𝑌3
+ = 0.87), (𝑑𝑙𝑌4

− = 0.48, 𝑑𝑙𝑌4
+ = 0.68), (𝑑𝑢𝑌4

− = 0.61, 𝑑𝑢𝑌4
+ = 0.87)}.} 

d) (𝑛𝐿
− 𝑎𝑛𝑑 𝑛𝐺

−)𝑎𝑛𝑑 (𝑛𝐿
+ 𝑎𝑛𝑑 𝑛𝐺

+) for each object 𝐻𝑖and corresponding to the parameter 𝑒𝑗 are given as:  

For object𝐻1, (𝑛𝐿
− = 2, 𝑛𝐺

− = 1)𝑎𝑛𝑑 (𝑛𝐿
+ = 2, 𝑛𝐺

+ = 1 ), 

for 𝐻2, (𝑛𝐿
− = 2, 𝑛𝐺

− = 2 )𝑎𝑛𝑑 (𝑛𝐿
+ = 1, 𝑛𝐺

+ = 3 ), 

for𝐻3, (𝑛𝐿
− = 1, 𝑛𝐺

− = 2 )𝑎𝑛𝑑 (𝑛𝐿
+ = 1, 𝑛𝐺

+ = 2 ), 

for𝐻4, (𝑛𝐿
− = 1, 𝑛𝐺

− = 3 )𝑎𝑛𝑑 (𝑛𝐿
+ = 1, 𝑛𝐺

+ = 3 ), 

for𝐻5, (𝑛𝐿
− = 1, 𝑛𝐺

− = 2 )𝑎𝑛𝑑 (𝑛𝐿
+ = 2, 𝑛𝐺

+ = 1 ). 

e) Probabilistic weight for object 𝐻1, is (𝑤𝐿1
− = 0.67, 𝑤𝐺1

− = 0.33 )𝑎𝑛𝑑 (𝑤𝐿1
+ = 0.67, 𝑤𝐺1

+ =  0.33 ), for object 

𝐻2, (𝑤𝐿2
− = 0.5, 𝑤𝐺2

− = 0.5 )𝑎𝑛𝑑 (𝑤𝐿2
+ = 0.25, 𝑤𝐺2

+ =  0.75 ), for object 𝐻3, (𝑤𝐿3
− = 0.33, 𝑤𝐺3

− =

0.67 )𝑎𝑛𝑑 (𝑤𝐿3
+ = 0.33, 𝑤𝐺3

+ =  0.67 ), for object 𝐻4, (𝑤𝐿4
− = 0.25, 𝑤𝐺4

− = 0.75 )𝑎𝑛𝑑 (𝑤𝐿4
+ = 0.25, 𝑤𝐺4

+ =

 0.75 )and for object 𝐻5, (𝑤𝐿5
− = 0.33, 𝑤𝐺5

− = 0.67 )𝑎𝑛𝑑 (𝑤𝐿5
+ = 0.67, 𝑤𝐺5

+ =  0.33 ). 

f) Now the missing entries are given by: 𝑢12
− = (0.55 × 0.67) + (0.65 × 0.33) = 0.37 + 0.21 = 0.58, 𝑢12

+ = (0.75 ×

0.67) + (0.82 × 0.33) = 0.50 + 0.27 = 0.77, 𝑢33
− = (0.41 × 0.33) + (0.73 × 0.67) = 0.14 + 0.49 = 0.63, 𝑢33

+ =
(0.73 × 0.33) + (0.87 × 0.67) = 0.24 + 0.58 = 0.82, 𝑢53

− = (0.41 × 0.33) + (0.73 × 0.67) = 0.14 + 0.49 =

0.63, 𝑢53
+ = (0.73 × 0.67) + (0.87 × 0.33) = 0.49 + 0.29 = 0.78. 

Therefore, the missing entries are [0.58, 0.77], [0.63, 0.82], [0.63, 0.78]. 

 

 

 

 

http://www.ajouronline.com/


Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 9 – Issue 1, February 2021 

 

Asian Online Journals (www.ajouronline.com)   17 

6. MULTI-CRITERIA DECISION MAKING METHOD 
To illustrate the application of interval valued fuzzy soft matrix in decision making, we consider in matrix given in table 8 

The steps involve in decision making are given below: 

1) Input the interval valued fuzzy soft matrix. 

2) Calculate the choice value 𝑐𝑖 = [𝑐𝑖
−, 𝑐𝑖

+]; where 𝑐𝑖
− = ∑ 𝑢𝑖𝑗

−𝑛
𝑗=1  𝑎𝑛𝑑 𝑐𝑖

+ =  ∑ 𝑢𝑖𝑗
+𝑛

𝑗=1 . 

3) Compute the score value 𝑠𝑖, given as 

𝑠𝑖 = ∑{(𝑐𝑖
− − 𝑐𝑗

−) + (𝑐𝑖
+ − 𝑐𝑗

+)}.

𝑛

𝑗=1

 

4) Choose the maximum value of 𝑠𝑖that is the requisite decision. If two or more values of 𝑠𝑖 are same, then choose any 

one of them according to your wisdom.  

 

Now using the above algorithm decision about the choice of robot given in example 5.2 is taken. After estimating the 

missing values using algorithm 5.1 the complete IVFSM is given in table 8.  

 

Table 8: Interval Valued Fuzzy Soft Matrix 

𝑹/𝑷 
𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 

𝒉𝟏 [0.6, 0.8] [𝟎. 𝟓𝟖, 𝟎. 𝟕𝟕] [0.5, 0.7] [0.4, 0.5] 

𝒉𝟐 [0.2, 0.5] [0.7, 0.8] [0.4, 0.8] [0.6, 0.9] 

𝒉𝟑 [0.5, 0.7] [0.6, 0.8]  [𝟎. 𝟔𝟑, 𝟎. 𝟖𝟐] [0.8, 0.9] 

𝒉𝟒 [0.8, 0.9] [0.5, 0.8] [0.8, 0.9] [0.6, 0.7] 

𝒉𝟓  [0.7, 0.9] [0.6, 0.7] [𝟎. 𝟔𝟑, 𝟎. 𝟕𝟖] [0.5,0.7] 

Compute the choice value 𝑐𝑖 = [𝑐𝑖
−, 𝑐𝑖

+] as given in table 9. 

 

Table 9: IVFSM with Choice Value 𝒄𝒊 

𝑹/𝑷 
𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 Choice value 𝒄𝒊 

𝒉𝟏 [0.6, 0.8] [0.58, 0.77] [0.5, 0.7] [0.4, 0.5] [2.08, 2.77] 

𝒉𝟐 [0.2, 0.5] [0.7, 0.8] [0.4, 0.8] [0.6, 0.9] [1.9, 3] 

𝒉𝟑 [0.5, 0.7] [0.6, 0.8]  [0.63, 0.82] [0.8, 0.9] [2.53, 3.22] 

𝒉𝟒 [0.8, 0.9] [0.5, 0.8] [0.8, 0.9] [0.6, 0.7] [2.7, 3.3] 

𝒉𝟓  [0.7, 0.9] [0.6, 0.7] [0.63, 0.78] [0.5,0.7] [2.43, 3.08] 

 

Now the score value 𝑠𝑖 is given as 

 

𝑠𝑖 = ∑{(𝑐𝑖
− − 𝑐𝑗

−) + (𝑐𝑖
+ − 𝑐𝑗

+)}.

𝑛

𝑗=1

 

Thus, 𝑠1 =  −2.76,  𝑠2 = −0.91, 𝑠3 = 1.74, 𝑠4 = 2.99, 𝑠5 = 0.54. the maximum score value is 𝑠4 = 2.99 that is 

corresponding to the robot 4. Hence, robot 4 is to be considered for manufacturing purpose.  

 

7. DISCUSSION AND CONCLUSION 
The estimation of unknown values described in the present paper is very important technique that can be applied in many 

areas of research, like agriculture, medical diagnosis, economics, and data management. Recently, Hooda and Barak [10] 

evolved a technique of estimation of missing values in contingency table and illustrated the same. Hooda and Barak [11] 
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have also described an interactive technique of missing values estimation in incomplete fuzzy matrix and interval valued 

fuzzy matrix and have applied the technique in solving a numerical problem.  

 

Surjit Das et al. [7] have also studied an algorithm of estimation of unknown information in incomplete fuzzy soft and 

interval valued soft sets. In view of the importance and need, we have studied technique to estimate the missing values in 

incomplete fuzzy soft and interval valued fuzzy soft matrices in the present paper with illustration. The proposed technique 

makes use of the known information by computing the mean of each parameter and then average distance of each object 

from the corresponding mean is calculated.  

 

As compared to the approach applied by Deng and Wang [5], our approach is preferably better as we use the weight of 

probabilities and a pair of deviations to retrieve the missing data. We have also studied the application of incomplete fuzzy 

soft and interval valued fuzzy soft matrices in decision making problem after estimating the unknown values in data.  
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