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ABSTRACT— This study provided a non-convex penalized estimation procedure viaSmoothed Clipped Absolute
Deviation (SCAD) and Minimax Concave Penalty (MCP) for count dataresponses to checkmate the problem of
covariates (d) exceeding the sample size (n) . The Generalized Linear Model (GLM) approach was adopted in
obtainingthe penalized functions needed by the MCPand SCAD non-convex penalizations of Binomial, Poisson and
Negative-Binomial related count responses regression. A case study of the colorectal cancer withsix (6) covariates
against sample size of five (5) was subjected to the non-convex penalized estimation of the three distributions. It was
revealed that the non-convex penalization of Binomial regression via MCP and SCAD best explained four un-
penalized covariates needed in determining whether surgical or therapyideal for treating the turmoil.

Keywords— Count Data, MinimaxConcave Penalty (MCP), Non-convexpenalization, Smoothed Clipped Absolute
Deviation (SCAD).

1. INTRODUCTION

Linear regressionanalysis of high-throughput and high dimensional datain bioinformatics, neurosciences, clinical

studies etc. often impede with the number of covariates (d) exceeding the number of the sample size (n) [14, 17].

Efficient methods of variable selection via shrinking of covariate(s) and sparse estimation of regression coefficients
techniques have been propounded based on penalized likelihood function (loss function) and regularizing

parameter"77". Among the techniques proposed to circumvent aforesaid challenge is the folded concave penalty
function of Least Absolute Shrinkage and Selection Operator (LASSO) proposed by [11] and either by Smooth ed

Clipped Absolute Deviation (SCAD) or minimax concave loss function of Minimax Concave Penalty (MCP) as
proponedby [3]and [15] respectively.

Unlike the convexpenalty, wherethe likelihood functions of LASSO, SCAD and MCP influence biasedness in
their parameter estimations via absolute values, non-convex (non-concave) penalty of MCP and SCAD relieves the
absolute value constrain in concave LASSO in order to eliminate the biasedness influence [18, 6]. Non-convex penalty

satisfiesawide range of statistical properties; ability not to only fix finite estimates of regression coefficients (ﬁ, ) but

also to estimate true zero regression coefficients with their probabilities approximately equals one to confirmtheir
sufficiency. In addition, the ability of non-convex MCP and SCAD to estimate non-zero coefficients as if the true
sparsely is known [10].

In this paper, the Probability Mass Functions (PMFs) of count data responses (dependent variables) of Binomial,
Poissonand Negative-Binomial distributions will be assumed o follow a linear regression responses when d > Nn. The

non-convexpenalized estimations ofthese countlinear regression responses will be subdued to loss (penalized) functions
of SCAD and MCP via Generalized Linear Model (GLM). Moreover, the solution of the penalized regression
coefficients will be via proximal coordinate iterative procedure because of its tractable global solution faster rate of
convergencefora pre-selected regularized parameter 77" and high dimensional selection criteria.
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2. SPECIFICATION OF THE NON-CONVEX PENALIZED ESTIMATION VIA GLM
Given independent randomvariablesand asetofcovariates (Y., X ) 1 =1,...... , N forarandomsample
froma linear regression

Y=Xf[+¢ ()

Where Y = (Y, Y,,...,Y,)" istheresponsevectormatrix X isthe n by d designmatrix

B=(B, B....3,) is the vectorof regression coefficients while & = (&,,&,,...,&,)" is the vector

matrix of the randomcomponent ofa Generalized Linear Models (GLM) such that its Probability Density
Function PDF or Probability Mass Function (PMF) belongs to the exponential family;

fyixB) = (4 6,9) =c(y;9i)exp{—yi (92(;;’(9”}

Where (6,,0,,...,0.)" = X 8=0(6)) is the natural or canonical parameter, Y. (6)) is the canonical

form, a(¢) is the scale parameterfor ¢ € (0,00) ,c(y; ) is the functionwith " y** only.

[3], [7] and [8] maintained that theapproach for estimating regression coefficients of a high dimensional data
vianon-convexregularization or penalization to be

@)

Q) -Min {2 L)+ 1,5) @
=Min {E(Xﬂ—y)% fn(ﬂ)} @
Bel n

Where L(ﬂ) is the loss function (the log function ofequation (2)), fn(ﬂ) isthenon-convexpenalized or
regularized function of either for SCAD or for MCP with turning parameter (otherwise known as regularized
parameter "'77"" that must satisfy the standard optimization solution of B, forafirst-order Karush-Kuhn-
Tucker (KKT) conditionof

h :G{L(ﬂq)+ f,i(ﬂn)} 5)
[3], [11] and [17] defined non-convexpenalty for SCAD as
n|A.] if g, <n
anlp|- )
f,(B)= - if n<|B|<an ®)
“(a-1 .
% if B.>n

For "a" which is a fixed parameter>2; 7> 0
Also, [6], [15] and [16] claimed that the non-convexpenalty for MCP to be

o(1-L ) e
£(B) = 7 U

b
777 B.|>nb
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-n).

san(B,)(8. ;
Otherwise, f, (f,) = 1-b ! ‘ﬂk

3 it |8,

<nb

>nb
"b" Whichis afixed parameter >0

The non-convexpenalty f}7 (,Bk) canbe decomposed into sumof penalty and sumofthe concave part;
d d
£,(8)=21,(8)=n|p|+>9,(5)
k=1 k=1

This could be simplified by rewriting as

G,(0)-20,8)=1,(0)-nlsl  ©

G, () connotesthedisintegration of concave part of the non-convexpenalty f, () .

[1], [9], [12] and [13] asserted thatthe regularized solution for the regression coefficients could be compressedto a

coordinate proximal method via Newpton-Raphsonmethod iteration for update via

c-1 1

0 (B, BY) = H, ©

suchthat, H, =VL(,)+VG,(8,) forachosen"n" andsurrogate L, >0 formofL, , B corresponds

tothe C" iteration within t" path solutionand " N "'the number of path stages.

log (%j
— nnd
log(y™)
1,4 Scales ofsamplesize "'n" and the dimension "d" and chosen ¥ ,andviathe selectionofturning parameter
(regularized parameter) "'77"" by modelselecon criteria of either[2], [4], [5], or [14].

AIC =-2L(p)+2df () , BIC =-2L(S)+log(N)df (1)
CAIC =-2L(B)+log(N +1)df (1)

EBIC, (s) =—2log L(p)+V,,, Iog(N)+2ylog(ij

Where "df " is the degreeof freedomofnon-zero parameters. 0<y <1 S C{l, ...... ,d} 0, is the parameter /3

whose components outside 'S"" beingsetto be zero or some pre-selected values, ,B(s) is the maximum likelihood

estimator of ,[3(5) while V. is the number of component(s).
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3. PENALIZED ESTIMATION VIA MCP AND SCAD

3.1.1 Binomial Penalized Regression Estimation

n
AssumeY, [ Bin(n,, p,) . Thenthe PMF; P(p;;y;, 1) :(y‘ j pY (L-p)" y =1,...... n

—exp{yllog pp +nlogl-p,)— Iog[;‘j} (10)

b(6) =n,(L+exp(8)), 0—Iog p c(y,,ﬁ)——log[yj p=1,

a(¢) =1, EY)=np, V(Y,)=npd-p)
Where p; is the probability of successand 1— p; is the probability of failure.

3.1.2 SCAD Non-Convex Penalized Binomial Regression

_ exp(Bx,)
1+exp(Bx,)

Q,(B) ——HZ{(yﬂX)—|09(1+eXp(ﬂX))}+G (B @

From equation (10), the link function of Binomial 1(X f) = P called Logit function

n|8,] for |g,|<n
~-B: -2a +7°
f,](SCAD)(ﬂk): ﬂk 2(3.77—|f)k| i for 77<|ﬂk|S an
2
@ for |B.|>an
_ 2
—277|’Bk| P for n<|B|<an
2(a-1)
g;;SCAD(ﬂk): (a+1) 2 _o |ﬁ|
772 171 P« |ﬂk|>a77

With non-convexloss function
. exp(f x,)
V. L(B) = B
BIN (ﬁ) Z {1+9Xp(ﬂX) y|}1
m.san(B)- B, for n, <|B|<an,
VGnBin(ﬂ)SCAD:{ k k | k|
1 Sgn(ﬁk) for |IBk | > a77m

Updating for optimal solution

1

1 -1 -1 -1 c-1

ﬁr(r:lJ(rSCAD) ::Br; Lc {VGan (ﬂc )SCAD +VBIN L(IHC )} BIN (12)

Where V,,, = diag { py (1 — p;),......, ps(L— p;)}

Until convergentofthe vector of regression coefficients is reached in equation (12) with starting value
S # 0and N" number of path stages.

For a>2
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3.1.3 MCP Non-Convex Penalized Binomial Regression
Fromequation (11),

2b
fi]MCP(IBk)_ b 9
% for |8, >bn
2
_Z_E for [B|<bn
9, mcp (ﬂk) = b772
Toalal] or (Al
By sign(s,) for | 8,|<bn,
VMCPGq(ﬂk): b
_nmSign(ﬁk) for |ﬂk| >b77m

For b>0 , updating for convergence,
1
1 -1 -1 -1 -1
ﬂr;J(rMCP) :ﬂr; _L_C{VMCPGqBin (IBC )+VL(ﬂC )}VC 13
m
Until convergentofthe vector of regression coefficients is reached in equation (13) with starting value
B, # 0and N® number of path stages.

3.2 Poisson Penalized Regression Estimation
Assume Y; [] Poisson(4,) . Then the PMF;

/'LYi
P(4:Y:) :exp(ﬂﬁ)? Y, =01......

=exp{y; log(4) -4 —log(y; )}
6, =log(4). b(6) =exp(6). ¢=1, alg) =1, c(y;;6)=-log(y,!)
E(Y)=V(Y)=4
Where 4, is the parameter of interest

The link function ofPoisson ££(X f3) = exp(B %) =10g(4,) called Probit function. Thenthecriterion for
the SCAD penalized Poissonregression

Q,(A) == {exp(Bx)-(FX)+G (A a4

ey
_ 2
—277|ﬂk| & for n<|p|<an
2(a-1)
gnSCAD(IBk): (a+1) 2 o |ﬂ|
772 2% for |B|>an

VP0| L(IB) :%Z::Xi {exp(,[;"xi) - yi}
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™ Sgn(ﬁk)_ﬂk for M <|ﬂk|£a77m

VG Poi SCAD —
! 2 {_Um sgn(4,) for |ﬂk | >arn,

c-1

Updating for convergence, 3y scan) =B ——{ Z Xi {eXp(,BC )=, }+ VG, o (B _1)SCAD} POI

(15)
Where, V,q, = diag {exp(8°X,)......,exp(5°X,)}
3.2.2 MCP Non-Convex Penalized Poisson Regression
Fromequation (14)
2
_f_l; |ﬂk| <bn
9,mce (ﬂk) = 2 Forb >0
*Lonlal]  tor gty

Vo L(ﬂ) :%ZL:Xi {eXp(ﬂlxi) - yi}

B
__nmSIQn(ﬂ) for ﬁ Sbnm
MCP I]PO| (ﬁk) b ‘ | k|

_nmSign(ﬂk) for |ﬁk| >b77m
Forb>0
c+1 c-1 11 c-1 c-1 et
ﬁm(MCP) :ﬁm _L_C szi {exp(IB Xi) - y.} +VMCPG;7PO| (ﬁ ) o (16).
m i=1
until convergenceof the vector of regression coefficients is reached in equation (16) with startingvalue

B # 0and N" number of path stages.

3.3 Negative-Binomial Penalized Regression Estimation
Assume Y; [ NB(K, p,) .Thenthe PMF;

-1
P(r,p; ) :U—lj pr@=p)" y=rr+lr+2.....

_ -1
= exp{yi log(d—p,)+r Iog%— IOQ(Z—J}

_ -1
b(6) :—rlog%, (y,:6) =—Iog(ry_1j O=logll- p). a(¢)=1,
E(Y )__ r (Y_):r(l—p): rexp(&)
p 1-exp(6) p* (L-exp(9))

"Ir" Is the shapeparameter for measuring the degree of clumping or aggregation (dispersion).
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3.3.1 SCAD Non-Convex Penalized Negative-Binomial Regression
1

1+exp(8x)

Then the criterion forthe SCAD penalized Negative-Binomial regression.

__13 ) — loq) L= EXP(BX)
Q,(p) = ;{(yiﬁxi) log{ exp(f X) H+Gn(ﬂ) ¢y

The link function of Negative Binomial z(X ) =7 = =, called log of the log function.

_ 2
—277|ﬂk| A for n<|p|<an
2(a-1)
gUSCAD(IBk): (a+1) 2 _o |ﬂ|
772 2% for |B|>an

Then the non-convexloss function

1 1
VNBI—(IB) :HiZ:l:Xi {Iog {m} - yi}

sgn — for <|B|<
VGUNB (ﬂ)SCAD _ {ﬂm g (ﬂk) ﬂk 77m |ﬂk| a]7m
1 Sgn(ﬂk) for |:Bk|>a77m

Updating for optimal regression coefficient

For a>2

Bt =B = (VaoGpa B+ VLE IV (9
ForV,g = diag{ reXp(.ﬁ‘cxl)z feeenns , I’eXp(lﬁ'CXn)z}
C R CTEN)

Until convergence ofthe vector of regression coefficients is reached in equation (18) with startingvalue
B # 0and N® number of path stages.

3.3.2 MCP Non-Convex Penalized Negative-Binomial Regression
From equation (17),

2
_f_tk) for |B|<bn
9, mce (B)= 772 Forb >0
*onlal]  ror gty

1 1
VL (B) :E.Z::‘ X; {'09 {m}— yi}

B
__nmSIQn(ﬂ ) for lB Sbnm
VMCPGUNB (ﬂk) = b ‘ | k|

_nmSign(ﬂk) for |:Bk| >b77m

Updating for optimal regression coefficient

c+ c- 1 c— c- c-—
ﬂm(k/lCP) :ﬂm ' _L_C{VMCPGnNB (IB l)"‘VL(ﬂ 1)}VNB ' (19
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Until convergence ofthe vector of regression coefficients is reached in equation (19) with starting value
S5 # 0and N" number of path stages.

4. ANALYSIS
A study case of colorectal cancerwas identified fromthe Nnamdi Azikwe teaching hospital, Anambrastate, Nigeria from
2014 to 2017. Colorectal cancer is a pelvic swollen turmoil in male patients .The data comprises of six (6) covariates

d = 6 asagainstthe sample size of five (5) N =5. The covariates are influences or factors thatdetermined whether
the the swollen pelvic will be subjectedto operation oruses of drugs in order to stop/suppress thegrowingturmoil. The
count covariates are age in years, status = level of progression, nodes=size of the turmoil (small or large cell cancer), e -
type =type ofthe cells, rx= level of completion of cancer therapy, and obstruct=chronic or acute level of the unwanted
growth. Fromthe stated date, only five cases were recorded.

Table 1: Poisson coefficients of model criteria, penalty, selected variables, residual deviance and penalized

residual.
Measures MCP SCAD GLM
BIC 14.4463 14.4463 20.5098
AIC 15.2274 15.2274 21.2270
L1 (Loss function) -11.22741 -11.22741 --
Log-likelihood  -5.6137 -5.6137 -5.6137
Deviance 0.8345 0.8345 8.3457e-01
Residual deviance 1.7492 1.7492 2.5596e-21
SelectedVariable(s) 4 4 4
PV 0.0009 0.0014 --
PR 2.3798 2.4056 --
RP 0.02449 0.02439 -
a=3 b=3.7

Keys: PV= Penalized Value; PR= Penalized Residual; RP= Regularized Parameter

Table 2: Binomial coefficients of model criteria, penalty, selected variables, residu al deviance and penalized

residual.
Measures MCP SCAD GLM

BIC 5.5705 45171 9.2030

AlC 6.3516 3.7360 10.000
Li(Loss function) -2.3516 -0.5171
Log-likelihood -7.1758 -7.2586 -7.0261

Deviance 0.3012 0.30112 6.7301e+00

Residual deviance 0.55167 0.317173 2.1434e-10
SelectedVariable(s) 4 4 4

PV 0.0009 0.00141 --

PR 0.28033 0.16563 --

RP 0.02449 0.02449

a=3 b=3.7

Keys: PV= Penalized Value; PR= Penalized Residual; RP= Regularized Parameter
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Table 3: Negative-Binomial coefficients of model criteria, penalty, selected variables, residual deviance and
penalized residual.

Measures MCP SCAD GLM
BIC 14.4675 14.4675 18.4901
AIC 15.2486 15.2486 19.0686

L1 (Loss function) -11.2486 -11.2486 --
Log-likelihood -5.6137 -5.6243 -5.6243
Deviance 0.8395 0.8394 0.9686
Residual deviance 1.7492 1.7492 1.9631

Selected Variable(s) 4 4 4

PV 0.0009 0.00139 --

PR 2.3798 2.4056 -

RP 0.02439 0.02439 --

a=3 b=3.7
Dispersion 0.0252 0.0251 --

Keys: PV= Penalized Value; PR= Penalized Residual; RP= Regularized Parameter

From the three distributional tables, two covariates “status”and “nodes” were penalized while four covariates
“extent”, “age”, “etype” and “rx” are the significantand contributing factors in the three differentdistributionresponses
considered (selected variables). It is obvious that Binomial non-convexpenalized estimation has the minimumerror
model selection criteria of BICs of (5.5705, 4.5171) and AICs of (6.3516, 3.7360) for MCP and SCAD respectively as
against a higher BICs and AICs of (14.4463, 14.4463) (14.4675, 14.4675) and (15.2274, 15.2274) (15.2486, 15.2486) for
Poissonand Negative Binomial MCPs and SCADs respectively. In collaboration with the modelselectio n criteria, the
log-likelihood ofthe Binomial MCP and SCAD happened to besmallest ofall the log-likelihoods ofthe distributions.
This affirmed the assertionthatthe smaller the log-likelihood theideal and robustthe model. The penalized values for the
MCPs and SCADs of the probability distributions coincide but their residuals vary. The penalized errors of Binomial
function for MCPand SCAD are (0.28033 & 0.28033) respectively compared to Poisson and Negative Binomial M CPs
and SCADs of same value at (2.3798 & 2.4056). It is to be notedthatthe GLM approachindirectly penalized covariates
by ignoring irrelevant covariates without necessary provision for penalization.
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Figure 1: Coefficient Plot ofthe Coefficient Paths for the Fitted MCPs and SCADs.

Figure 1. shows the path fitted of the regression coefficients by each ofthe MCPsand SCADs of the considered
probability mass distributions. Having said that each of the non -convexpenalized estimationselected four covariates,

Binomial non-convexpenalizations of estimates of S showeda more non-homogeneity in nature for conformity as

against a parallel estimates by Poissonand Negative Binomial non-convexpenalizations. Figure 1 buttresses theaberrant
of the actual responses in the MCPs, SCADs of Poisson, and Negative Binomial non-convexpenalization to their
predicted responses. Moreover, figure 1. elucidates onthe high magnitude of values suppressed by Poissonand Negative
Binomial distributions in the process of penalizing based on the considered casestudy. In addition, Negative Binomial
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distribution estimated a smaller value for the frequency distribution scattering froman average, that is, the Negative -
Binomial responses revealed an over-dispersion of 2.5% by the covariates, which is ofnegligible consequence as to
affecting the estimated parameters. Furthermore, The GLM approachwas out-performed by the measurement indexes of
the non-convexofthe penalizations.

Deviances by SCAD
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Figure 2: Deviance plot of the MCPs and
SCAD:s via Binomial, Poisson Negative Binomial distributions.

Penalized values by SCAD
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Figure 3: Penalized values by each ofthe MCPs and SCADs in

Binomial, Poisson Negative Binomial distributions.

5. CONCLUSION

Given the previous analysis, it is safe to statethatthe Binomial related responses of non-convexpenalization via MCP
and SCAD was pre-eminent in the regulation of factors contributing to a surgical or drug use approach in curbing
colorectal cancer via penalization of covariates. Apart fromthe Poisson, Binomialand Negative Binomial responses
non-convex penalization considered, it should be noted that responses with different PMFs or PDFs could also be
constrained to the non-convex penalization via GLM provided they belong to the exponential family. However, the
Ordinary Least Square (OLS) could also be considered as an alternative approach forthe GLM when circumventing the
problemofnumber of covariates exceeding the sample size via MCP and SCAD.
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