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_________________________________________________________________________________ 

ABSTRACT— This study provided a non-convex penalized estimation procedure via Smoothed Cl ipped Absolute 
Deviation (SCAD) and Minimax Concave Penalty (MCP) for count data responses to  checkmate the problem of 

covariates ( )d  exceeding the sample size ( )n . The Generalized Linear Model (GLM) approach was adopted in 

obtaining the penalized functions needed by the MCP and SCAD non-convex penalizations of Binomial, Poisson and 
Negative-Binomial related count responses regression. A case study of the colorectal cancer with six (6 ) covariates 

against sample size of five (5) was subjected to the non-convex penalized estimation of the three distributions. It  was 
revealed that the non-convex penalization of Binomial regression via MCP and SCAD best explained four un-
penalized covariates needed in determining whether surgical or therapy ideal for treating the turmoil. 

 
Keywords— Count Data, Minimax Concave Penalty (MCP), Non-convex penalization, Smoothed Clipped Absolute 
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_________________________________________________________________________________ 

 

1. INTRODUCTION 

 

Linear regression analysis of high-throughput and high dimensional data in bioinformatics, neurosciences, clin ical 

studies etc. often impede with the number of covariates ( )d exceeding the number of the sample size ( )n  [14, 17]. 

Efficient methods of variable selection via shrinking of covariate(s) and sparse estimation o f regression coefficien ts 
techniques have been propounded based on penalized likelihood function (loss functio n) and regularizing 

parameter" " . Among the techniques proposed to circumvent aforesaid challenge is the folded concave penalty 

function of Least Absolute Shrinkage and Selection Operator (LASSO) proposed by [11] and either by Smooth ed 

Clipped Absolute Deviation (SCAD) or minimax concave loss function of Minimax Concave Penalty (MCP) as 
proponed by [3] and [15] respectively.  

Unlike the convex penalty, where the likelihood functions of LASSO, SCAD and MCP influence b ias edness in  
their parameter estimations via absolute values, non-convex (non-concave) penalty o f MCP and  SCA D relieves the 

absolute value constrain in concave LASSO in order to eliminate the biasedness influence [18, 6]. Non -convex penalty 

satisfies a wide range of statistical properties; ability not to only fix finite estimates of regression coefficients ( )i but  

also to estimate true zero regression coefficients with their probabilities approximately equals one to confirm their 
sufficiency. In addition, the ability of non-convex MCP and SCAD to estimate non-zero coefficients as if the true 

sparsely is known [10]. 

In this paper, the Probability Mass Functions (PMFs) of  count data responses (dependent variables) o f  Binomial, 

Poisson and Negative-Binomial distributions will be assumed to follow a linear regression responses when d n . The 

non-convex penalized estimations of these count linear regression responses will be subdued to loss (penalized) functions 
of SCAD and MCP via Generalized Linear Model (GLM). Moreover, the solution of the penalized regression 

coefficients will be via proximal coordinate iterative procedure because of its tractable global solution faster rate of 

convergence for a pre-selected regularized parameter" " and high dimensional selection criteria. 
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2. SPECIFICATION OF THE NON-CONVEX PENALIZED ESTIMATION VIA GLM 

Given independent random variables and a set of covariates ( , )
i i

y x  1, ,i n  for a random sample 

from a linear regression 

                                                                                    Y X                                                    (1) 

Where 
1 2

( , , , )T

n
Y y y y  is the response vector matrix, X  is the n by d  design matrix, 

0 1
( , , , )T

n
     is the vector of regression coefficients while 

1 2
( , , , )T

n
     is the vector 

matrix of the random component of a Generalized Linear Models (GLM) such that its Probability Density 
Function PDF or Probability Mass Function (PMF) belongs to the exponential family;  
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Where 
1 2

( , , , ) ( )T

n i
X b       is the natural or canonical parameter, ( )

i i
y   is the canonical 

form, ( )a   is the scale parameter for (0, )   , ( ; )
i

c y   is the function with " "y   only. 

[3], [7] and [8] maintained that the approach for estimating regression coefficients of a high dimensional data 

via non-convex regularization or penalization to be 
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Where ( )L  is the loss function (the log function of equation (2)), ( )f   is the non-convex penalized  o r 

regularized function of either for SCAD or for MCP with turning parameter (otherwise known as regu larized  

parameter " "  that must satisfy the standard optimization solution of  
  for a firs t -o rder Karus h-Kuhn-

Tucker (KKT) condition of  

                                                              ( ) ( )h L f                                    (5) 

[3], [11] and [17] defined non-convex penalty for SCAD as        
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            For " "a  which is a fixed parameter 2 ; 0   

           Also, [6], [15] and [16] claimed that the non-convex penalty for MCP to be 
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                     Otherwise, 

sgn( )( )

( ) 1

k k

k

k

k k

if b
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            " "b  Which is a fixed parameter 0   

           The non-convex penalty ( )
k

f  can be decomposed into sum of penalty and sum of the concave part; 

                                           
1 1
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d d

k k
k k
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            This could be simplified by rewriting as 

                                                      

1

( ) ( ) ( )
g

k
k
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                     (8) 

         ( )G   connotes the disintegration of concave part of the non-convex penalty ( )f   .  

          [1], [9], [12] and [13] asserted that the regularized solution for the regression coefficients could be compressed to a  

         coordinate proximal method via Newpton-Raphson method iteration for update via                  

                                                          1 1 1
, ,c

m

c c

m m m cL

m

H
L

                           (9) 

        such that, ( ) ( )H L G      for a chosen " "  and surrogate 0c

m
L  form of

m
L
 , 

c

m
  corresponds  

        to the 
thc iteration within 

tht path solution and " "N the number of path stages. 

                                                                                   

0

1

log

log( )

ndN





 

 
 
    

      
nd

  scales of sample size " "n   and the dimension " "d  and chosen , and via the selection of turning parameter      

      (regularized parameter)  " "  by model selecon criteria of either[2], [4], [5], or [14].  
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   Where " "df  is the degree of freedom of non-zero parameters. 0 1   1, ,s d ,
( )s

  is the parameter        

  whose components outside " "s  being set to be zero or some pre-selected values, ( )s  is the maximum likelihood   

  estimator of 
( )s

  while 
( )s

v is the number of component(s). 
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3. PENALIZED ESTIMATION VIA MCP AND SCAD 

 

3.1.1 Binomial Penalized Regression Estimation 

Assume ( , )
i i i

Y Bin n p . Then the PMF;  ( ; , ) (1 ) 1, ,i i i
i n yy

i i i i i i i

i

n
P p y n p p y n

y
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Where 
ip  is the probability of success and 1 ip  is the probability of failure. 

 
3.1.2 SCAD Non-Convex Penalized Binomial Regression     

From equation (10), the link function of Binomial 
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Updating for optimal solution 
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Where  1 1
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BIN n n
V diag p p p p     

Until convergent of the vector of regression coefficients is reached in equation (12) with starting value    

0c

m
  and Nth number of path stages. 
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3.1.3 MCP Non-Convex Penalized Binomial Regression     
From equation (11),  
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For 0b  , updating for convergence,  
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Until convergent of the vector of regression coefficients is reached in equation (13) with starting value 

0c

m
  and Nth number of path stages. 

 
3.2 Poisson Penalized Regression Estimation 

 Assume ( )
i i

Y Poisson  . Then the PMF;  
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Where i is the parameter of interest 

The link function of Poisson 
' '( ) exp( ) log( )
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X x      called Probit function. Then the criterion for 

the SCAD penalized Poisson regression 

                                      ' '

1

1
( ) exp( ) ( ) ( )

n

i i i
i

Q x y x G
n

    


                   (14) 

                       

2

2

2

2( 1)
( )

( 1) 2

2

k k

k

SCAD k

k

k

for a
a

g
a

for a



  
  


  

 

 
 




 


 

 '

1

1
( ) exp( )

n

POI i i i
i

L x x y
n

 


    

http://www.ajouronline.com/


Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 8– Issue 3, December 2020 
 

Asian Online Journals (www.ajouronline.com)  32 

 

                 
sgn( )

( )
sgn( )

m k k m k m

Poi SCAD

m k k m

for a
G

for a


     


   

   
  

 

 

Updating for convergence,  
11 1 ' 1 1

( )
1

1 1
exp( ) ( )

c
n

c c c c

m SCAD m i i i POI SCAD POIc
im

x x y G V
L n

   
   



 
    

 
    

                                                                                                                                                  (15) 

          Where,   ' '

1
exp( ), ,exp( )c c

POI n
V diag x x    

 
3.2.2 MCP Non-Convex Penalized Poisson Regression     

  
From equation (14) 
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until convergence of the vector of regression coefficients is reached in equation (16) with starting value 

0c

m
  and Nth number of path stages. 

 
3.3 Negative-Binomial Penalized Regression Estimation 

Assume ( , )
i i

Y NB k p .Then the PMF;  
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" "r  Is the shape parameter for measuring the degree of clumping or aggregation (dispersion). 
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3.3.1 SCAD Non-Convex Penalized Negative-Binomial Regression 

The link function of Negative Binomial 
'
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called log of the log function. 

Then the criterion for the SCAD penalized Negative-Binomial regression. 
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Then the non-convex loss function 
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Updating for optimal regression coefficient 
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Until convergence of the vector of regression coefficients is reached in equation (18) with starting value 

0c

m
  and Nth number of path stages. 

 

3.3.2 MCP Non-Convex Penalized Negative-Binomial Regression 

From equation (17),  
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Updating for optimal regression coefficient 
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Until convergence of the vector of regression coefficients is reached in equation (19) with starting value 

0c

m
  and Nth number of path stages. 

 

4. ANALYSIS 
A study case of colorectal cancer was identified from the Nnamdi Azikwe teaching hospital, Anambra state, Nigeria from 

2014 to 2017. Colorectal cancer is a pelvic swollen turmoil in male patients .The data comprises of six (6) covariates 

6d   as against the sample size of five (5) 5n  . The covariates are influences or factors that determined  whether 

the the swollen pelvic will be subjected to operation or uses of drugs in order to stop/suppress the growing turmoil. The 
count covariates are age in years, status = level of progression, nodes=size of the turmoil (small or large cell cancer), e -

type = type of the cells, rx = level of completion of cancer therapy, and obstruct = chronic or acute level of the unwanted 
growth. From the stated date, only five cases were recorded.  
 

Table 1:  Poisson coefficients of model criteria, penalty, selected variables, residual deviance and penalized 
residual. 

   Measures  MCP                    SCAD GLM 

BIC 

 

 14.4463                  14.4463 

 

  20.5098 

AIC 

 

15.2274                   15.2274 

 

  21.2270 

L1 (Loss function) -11.22741                 -11.22741 -- 

Log-likelihood -5.6137                   -5.6137   -5.6137 

Deviance  0.8345                    0.8345 8.3457e-01 

Residual deviance 1.7492                    1.7492 2.5596e-21 

SelectedVariable(s)   4                         4 4 

PV 0.0009                    0.0014       -- 

PR 2.3798                    2.4056          -- 

RP 0.02449                   0.02439 
   a=3                        b=3.7 

         -- 

                             Keys:  PV= Penalized Value; PR= Penalized Residual; RP= Regularized Parameter  

Table 2:  Binomial coefficients of model criteria, penalty, selected variables, residual deviance and penalized 
residual. 

   Measures   MCP                 SCAD GLM 

BIC 

 

  5.5705                4.5171 

 

9.2030 

AIC 

 

  6.3516                3.7360 

 

 10.000 

L1(Loss function) 

 

  -2.3516               -0.5171 

 

   ---- 

Log-likelihood 

 

  -7.1758               -7.2586 

 

     -7.0261 

Deviance    0.3012                0.30112       6.7301e+00 

Residual deviance   0.55167               0.317173  2.1434e-10 

SelectedVariable(s)      4                           4           4 

PV  0.0009                  0.00141           -- 

PR  0.28033                 0.16563  -- 

RP  0.02449                 0.02449 

     a=3                      b=3.7 

 

                              Keys:  PV= Penalized Value; PR= Penalized Residual; RP= Regularized Parameter  
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Table 3: Negative-Binomial coefficients of model criteria, penalty, selected variables, residual deviance and 

penalized residual. 

   Measures   MCP                  SCAD    GLM 

BIC   14.4675                14.4675    18.4901 

AIC   15.2486                15.2486    19.0686 

L1 (Loss function) 

 

  -11.2486               -11.2486 

 

         -- 

Log-likelihood 

 

  -5.6137                -5.6243 

 

   -5.6243 

Deviance  0.8395                 0.8394  0.9686 

Residual deviance 1.7492                 1.7492 1.9631 

Selected Variable(s)   4                      4 4 

PV 0.0009                 0.00139 -- 

PR 2.3798                  2.4056 -- 

RP 0.02439                0.02439 

   a=3                     b=3.7 

-- 

Dispersion 0.0252                  0.0251 -- 

                         Keys:  PV= Penalized Value; PR= Penalized Residual; RP= Regularized Parameter  

 

 
From the three distributional tables, two covariates “status” and “nodes” were penalized  while four covariates 

“extent”, “age”, “etype” and “rx” are the significant and contributing factors in the three different distribution responses 
considered (selected variables). It is obvious that Binomial non-convex penalized estimation has the minimum error 
model selection criteria of BICs of (5.5705, 4.5171) and AICs of (6.3516, 3.7360) for MCP and SCAD respectively as 

against a higher BICs and AICs of (14.4463, 14.4463) (14.4675, 14.4675) and (15.2274, 15.2274) (15.2486, 15.2486) for 
Poisson and Negative Binomial MCPs and SCADs respectively. In collaboration with the model selectio n criteria, the 
log-likelihood of the Binomial MCP and SCAD happened to be smallest of all the log-likelihoods of the d ist ribut ions. 

This affirmed the assertion that the smaller the log-likelihood the ideal and robust the model. The penalized values for the 
MCPs and SCADs of the probability distributions coincide but their residuals vary. The penalized  erro rs  o f Binomial 

function for MCP and SCAD are (0.28033 & 0.28033) respectively compared to Poisson and Negative Binomial MCPs  
and SCADs of same value at (2.3798 & 2.4056). It is to be noted that the GLM approach indirectly penalized covariates 
by ignoring irrelevant covariates without necessary provision for penalization.  

 

 

 

 

 

 

 

 

 

 

http://www.ajouronline.com/


Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 8– Issue 3, December 2020 
 

Asian Online Journals (www.ajouronline.com)  36 

 

 

 

 

 

 

 

                 Figure 1:  Coefficient Plot of the Coefficient Paths for the Fitted MCPs and SCADs. 

 
 
Figure 1. shows the path fitted of the regression coefficients by each of the MCPs and SCADs of the considered  

probability mass distributions. Having said that each of the non-convex penalized estimation selected four covariates, 

Binomial non-convex penalizations of estimates of s  showed a more non-homogeneity in nature fo r conformity  as  

against a parallel estimates by Poisson and Negative Binomial non-convex penalizations. Figure 1 buttresses the aberrant 
of the actual responses in the MCPs, SCADs of Poisson, and Negative Binomial non -convex penalization to their 
predicted responses. Moreover, figure 1. elucidates on the high magnitude of values suppressed by Poisson and Negative 

Binomial distributions in the process of penalizing based on the considered case study. In addition, Negative Binomial 
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distribution estimated a smaller value for the frequency distribution scattering from an average, that is , the Negative -

Binomial responses revealed an over-dispersion of 2.5% by the covariates, which is of neg lig ib le consequence as to 
affecting the estimated parameters.  Furthermore, The GLM approach was out-performed by the measurement indexes of 
the non-convex of the penalizations. 

 

 

Figure 2: Deviance plot of the MCPs and 
SCADs via Binomial, Poisson Negative Binomial distributions. 

 

 
Figure 3: Penalized values by each of the MCPs and SCADs in 

Binomial, Poisson Negative Binomial distributions. 
 

 

 

5. CONCLUSION 
Given the previous analysis, it is safe to state that the Binomial related responses of non-convex penalizat ion  v ia MCP 
and SCAD was pre-eminent in the regulation of factors contributing to a surgical or drug use approach in curbing 

colorectal cancer via penalization of covariates.  Apart from the Poisson, Binomial and Negative Binomial res ponses 
non-convex penalization considered, it should be noted that responses with different PMFs or PDFs could also be 
constrained to the non-convex penalization via GLM provided they belong to the exponential family. However, the 

Ordinary Least Square (OLS) could also be considered as an alternative approach for the GLM when circumventing the 
problem of number of covariates exceeding the sample size via MCP and SCAD. 
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