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ABSTRACT---- In this paper, we present a mathematical model for a prey-predator system with infectious disease in 

the prey population. We assumed that there is harvesting from the predator and a defensive property against predation. 

This model is constituted by a system of nonlinear decoupled ordinary first order differential equations, which describe 

the interaction among the healthy prey, infected prey and predator. The existence, uniqueness and boundedness of the 

system solutions are investigated. Local stability of the system at equilibrium points is discussed. 
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1. INTRODUCTION 

The prey-predator species interaction has been studied by many researchers and engineers since Lotka-Volterra 

model see, for example, [1]. Similarly, the susceptible-infected-recovered population interaction is becoming an interesting 

research work since the pioneering work of Kermack and Mc Kendrick [2]. The dynamics of disease with in the ecological 

systems is playing an important role in eco-epidemiology research. In [3], Anderson and May were introduced the research 

on combination of these two systems, and the term “eco-epidemiology” is used first by Chattopadhyay and Arino in [4] for 

such type of models. Several scientists and engineers are studied the dynamics of prey-predator using various effects of 

variety of biological factors within the last decades, see, for example [5-8], and different types of mathematical models 

have been created in epidemiology using different types of incidence rates and disease, see, for example [9-13]. In this 

paper, we propose a mathematical model for a prey-predator system with infectious disease in the prey population. We 

assumed that there is harvesting from the predator and a defensive property against predation. The existence, uniqueness 

and boundedness of the system solutions are investigated. Local stability of the system at equilibrium points is discussed 

and the analytical results obtained in proposed model are justified using numerical simulations. 

The paper is organized as follows. Section 2 presents the mathematical model formulation; Section 3 discusses 

the local stability of all possible equilibrium points of the system; and in Section 4, we discuss the conclusion of the 

proposed model. 

2. MODEL FORMULATION 

In the proposed model, we study a prey-predator system involving infected disease in prey. We assumed that there 

is harvesting from the predator and a defensive property against predation. In this model, the population density of prey is 

divided into two parts namely, the susceptible population density at time t given by x(t) and the infected population density 

at time t denoted by y(t), and the population density of predator at time t is given by z(t).  

2.1 Assumptions 

According to the following hypotheses, the mathematical model of an eco-epidemic prey-predator model with harvesting 

in predator is formulated. 

(a). The prey population grows logistically with intrinsic growth rate r > 0. It is assumed that the infected can’t 

reproduce rather than that it competes with the susceptible individuals for food and space. 

(b). The susceptible prey population becomes infected by contact with the infected prey according to the simple mass 

action kinetics with 0   as the rate of infection. 
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(c). The constants 1 (0,1)e   and 2 (0,1)e   are the conversion rates from susceptible and infected preys to predator 

respectively. 

(d). The disease cases a death in the infected population that represented by diseased death rate 1 0d  . While in the 

absence of prey, the predator decay exponentially with natural death rate 2 0d  . 

(e). We use the coefficients 0   and 0   for the competing coefficient of y over x and the computing coefficient 

of z over y respectively.   

2.2 Mathematical Model 

According to the above set of hypotheses the dynamics of a diseased prey-predator model with predator harvesting can be 

describe in the following set of first order nonlinear differential equations. 
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where (0) 0, (0) 0, (0) 0x y z   . 

3. STABILITY ANALYSIS 

In this section, we discuss about the equilibrium points of the model (1), existence and stability analysis of equilibrium 

points. 

 

3.1 Equilibrium Points 

The equilibrium points of the system are necessary for the purpose of studying the local stability nature of the eco-epidemic 

prey-predator model. The system (1), under investigation, has the following four equilibrium points. 

(i). Fully washed state or extent state: 1 (0,0,0)E   

(ii). Infected species washed state: 
2
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(iii). Predator washed state: 
1
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 This equilibrium point exists when r  . 

(iv). Coexistence state:  * * *

4 , ,E x y z , where 
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This equilibrium point 4E  exists when 2 1e e , 2 2 1 2( )( ) ( )e d e d r d e         and 

2 1( ) ( )d e d r     . 

3.2 Existence and Stability Analysis of Equilibrium Points 

The Jacobin matrix for the system (1) at equilibrium point E = (x, y, z) is given by 
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Based on the nature of Eigen values, the dynamical system (1) gets stable when all three Eigen values are negative in case 

of real roots or negative real parts in case of complex roots of the characteristic equation for the above Jacobin matrix (2), 

otherwise the dynamical system is unstable. 

Theorem 1: The dynamical system (1) is unstable at the equilibrium points E1 and E2. 

Proof: (i) The Eigen values of the dynamical system (1) at E1 = (0, 0, 0) are computed using the Jacobin matrix at E1.   
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Now the Eigen values are 1,r d  and 2d e  . Therefore, the equilibrium point E1 is saddle point. 

(ii) Similarly, the Eigen values of the dynamical system (1) at
2
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 are computed using the Jacobin 

matrix at E2.   
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The characteristic equation of 
2EJ  is 
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and the Eigen values are 2( )i d e r   and 2 1 1

1

( ) ( )d e d r e

e
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. Since there is no real part exists in case of 

complex Eigen values, the dynamical system is unstable. 

Theorem 2: The dynamical system (1) is locally asymptotically stable at 
1
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 if r 

 
and 

2 1
4 1( )r d   , r  . 

Proof: For this equilibrium point the corresponding Jacobin matrix is 
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The corresponding Eigen values are 
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Hence the system (1) is locally asymptotically stable when r 
 
and 

2 1
4 1( )r d   , r  . 

Theorem 3: The equilibrium point  * * *
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Solving above equations for 
* * *, ,x y z , we obtain  
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These would be positive when 2 1e e , 2 2 1 2( )( ) ( )e d e d r d e         and 2 1( ) ( )d e d r     . So, 

the interior equilibrium point E4 for system (1) exists if 2 1e e , 2 2 1 2( )( ) ( )e d e d r d e        and 

2 1( ) ( )d e d r     . 

Theorem 4: The dynamical system (1) at the coexistent equilibrium point E4 is locally asymptotically stable if 

0 20, 0a a   and 0 1 2 0a a a   otherwise is unstable. 

Proof: The Jacobin matrix corresponding to the equilibrium point E4 is 
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where 
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The characteristic equation 
4EJ  is

3 2

0 1 2 0a a a      . Here 0 22 ,a H   

1 12 21 13 31 23 32( )a H H H H H H     and 2 31 12 23 13 21 32 13 22 31a H H H H H H H H H    . Therefore, by Routh-

Hurwitz criteria, the equilibrium point E4 is locally asymptotically stable if 0 20, 0a a   and 0 1 2 0a a a   otherwise 

is unstable. 

4. CONCLUSIONS AND DISCUSSIONS 

This paper elucidates an ecological model of a prey-predator system with infectious disease in the prey population. This 

model is constituted by a system of nonlinear decoupled ordinary first order differential equations, which describe the 

interaction among the healthy prey, infected prey and predator. By using perturbed method, we identify the local stability 

nature of the system at each possible equilibrium point and also the existence, uniqueness and boundedness of the system 

solutions are investigated. 

(i). From Theorem 2, we can observe that the dynamical system (1) is locally asymptotically stable at the equilibrium 

point 3E  when r 
 
and 

2 1
4 1( )r d   , r  .  

(ii). One can also notice, from Theorem 4, that the dynamical system (1) at the coexistent equilibrium point E4 = (
* * *, ,x y z ) is locally asymptotically stable if 0 20, 0a a   and 0 1 2 0a a a   otherwise is unstable, where 

1 12 21 13 31 23 32( )a H H H H H H    , 2 31 12 23 13 21 32 13 22 31a H H H H H H H H H    , 0 22 ,a H 
 
and 

,ijH 1 , 3i j    are as given Theorem 4. 
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