A Note in the Topological Groups

Kazem Haghnejad Azar

University of Mohaghnegh Ardabili Ardabil-Iran Email: haghnejad [AT] uma.ac.ir

ABSTRACT— In this note, for a topological group G, we introduce a new concept as bounded topological group, that is, $E \subseteq G$ is called bounded, if for every neighborhood V of identity element of G, there is a natural number n such that $E \subseteq V^n$. We study some properties of this new concept and its relationships with other topological properties of topological groups.

Keywords- Topological Group, Bounded Topological Groups, Group

1. INTRODUCTION

A topological group consists of a group G equipped with a topology τ such that multiplication $(x, y) \rightarrow xy$ and inverse operation $x \rightarrow x^{-1}$ are both continuous mappings. In the papers [1, 2, 3], some authoress have been studied some properties of topological groups. In this paper, we study the boundedness of topological group. Suppose that G is a topological group and $E \subseteq G$. If G is metrizablity, we show that $E \subseteq G$ is bounded with respect to topology if and only if it is bounded with respect to metric induced by this topology. If $E \subseteq G$ is bounded and closed, then we show that E is compact. Conversely, if E is a component of eand compact, then E is bounded. We investigate some topological properties for bounded subset of G.

For a topological group G, e is an identity element of G and for $E \subseteq G$, E^- is closure of E and for every $n \in \mathbb{N}$, we define E^n as follows

$$E^{n} = \{x_{1}x_{2}x_{3}...x_{n} : x_{i} \in E, 1 \le i \le n\}.$$

A topological space X is O-dimensional if the family of all sets that are both open and closed is open basis for the topology, for more information see chapter 2 of [2].

2. MAIN RESULTS

Definition 2.1. Let G be topological group and $E \subseteq G$. We say that E is a topological bounded, if for every neighborhood V of e, there is a natural number n such that $E \subset V^n$.

It is clear that if E is a topological bounded subset of G and H is a subgroup of G, then E/H is a topological bounded subset of G/H. For example P/N is bounded topological group. In this section, we use some notations, definitions and results that for more information look chapter 2 from [2].

Theorem 2.2. Let G be a topological group and metrizable with respect to a left invariant metric d. Then G is topological bounded if and only if G is bounded with respect to metric d.

Proof. Let G be a topological bounded group and $\varepsilon > 0$. Take $d([0, \varepsilon)) = U \times V$ where U and V are neighborhoods of e. Suppose that W is symmetric neighborhood of e such that $W \subseteq U \cap V$. Then there is natural number n such that $W^n = G$. Since $d(W \times W) < \varepsilon$, we show that $d(W^2 \times W^2) < 2\varepsilon$, and so $d(W^n \times W^n) < n\varepsilon$. Assume that $x, y, x', y' \in W$. Then we have

$$d(xy, x'y') \le d(xy, e) + d(e, x'y') = d(y, x^{-1}) + d(x'^{-1}, y') < 2\varepsilon.$$

It follows that $d(G \times G) = d(W^n \times W^n) < n\varepsilon$.

Conversely, suppose that G is bounded with respect to metric d. Then there is M > 0 such that $d(G \times G) < M$. Let U be a neighborhood of e. Choose $\varepsilon > 0$ such that $d^{-1}([0, \varepsilon)) \subseteq U \times U$. Take a natural number n such that $n\varepsilon > M$. Then we have

$$G \times G = d^{-1}([0, M)) = d^{-1}([0, n\varepsilon)) \subseteq V^n \times V^n.$$

It follows that $G = V^n$, and so that G is topological bounded.

Theorem 2.3. Let G be topological group and let H be a normal subgroup of G. If H and G/H are topological bounded, then G is topological bounded.

Proof. Let U be a neighborhood of e. Put $V = U \cap H$. Then there are natural numbers m and n such that $(U/H)^n = G/H$ and $V^m = H$. We show that $U^{n+m} = G$. Let $x \in G$. Then if $x \in H$, we have

$$x \in V^m \subset U^m \subset U^{n+m}$$

Now let $x \notin H$. Then $xH \in (U/H)^n$. Assume that $x_1, x_2, \dots, x_n \in U$ such that

$$xH = x_1 x_2 \dots x_n H.$$

Consequently there is $h \in H$ such that $xh \in U^n$, and so $x \in U^nH \subset U^nV^m \subset U^nU^m = U^{n+m}$. We conclude that $U^{n+m} = G$, and proof hold.

Theorem 2.4. If G is an infinite locally compact O-dimensional topological group, then G is unbounded. *Proof.* Let U be a neighborhood of e such that U^- is compact and $U^- \neq G$. Since G is a O-dimensional topological group, U contains an open and closed neighborhood as V. Then V is a compact neighborhood of e. By apply [2, Theorem 4.10], there is a neighborhood W of e such that $WV \subset V$. Take $W_0 = W \cap V$. Then $W_0^2 \subset WV \subset V \subset U^-$. By finite induction, we have

$$W_0^{\ n} \subset W_0 W_0^{\ n-1} \subset WV \subset V \subset U^-,$$

for $n \in \mathbb{N}$. It follows that $W_0^n \Leftarrow G$, and so G is unbounded.

Theorem 2.5. Suppose that G is a locally compact, Hausdorff, and totally disconnected topological group. Then G is unbounded.

Proof. By using [2, Theorem 3.5] and Theorem 2.4, proof hold.

Theorem 2.6. Let G be an infinite topological group. Then we have the following assertions.

1. If $E \subset G$ is topological bounded, then E^- is topological bounded subset of G.

2. If G is topological bounded, then G is connected and moreover G has no proper open subgroups.

Proof. 1) Let U be a neighborhood of e and suppose that V is a neighborhood of e such that $V^- \subset U$. Since E is topological bounded subset of G, there is natural number n such that $E \subset V^n$. Then $E^{-} \subset (V^{n})^{-} \subset (V^{-})^{n} \subset U^{n}$. It follows that E^{-} is a topological bounded subset of G.

2) Since G is topological bounded, there is a natural number n such that $G = V^n$ where V is neighborhood of e. By using [2, Corollary 7.9], proof hold.

Corollary 2.7. Assume that G is a locally compact topological group. Then every topological bounded and closed subset of G is compact, moreover if $E \subset G$ is topological bounded, then E^- is compact.

Every topological bounded topological group G, in general, is not compact, for example P/Z is topological

bounded, but is not compact.

Theorem 2.8. Let G be topological group and suppose that $E \subset G$ is the component of e. If E is compact, then E is topological bounded.

Proof. Since E is the component of e, by using [2, Theorem 7.4], for every neighborhood U of e, we have $E \subseteq \bigcup_{k=1}^{\infty} U^{k}$. Since E is compact there is natural number n such that $E \subseteq U^{n}$. Then E is topological bounded subset of G.

For a topological group G, in general, each compact subset E is not topological bounded and by proceeding theorem, E must be a component of e. For example, for $n \ge 1$, $Z_n = \{\overline{0}, \overline{1}, \overline{2}, ..., \overline{n}\}$ with discrete topology is not topological bounded, but it is compact.

Corollary 2.9. If G is a locally compact topological group, then the component of e is topological bounded.

Theorem 2.10. Let G and G' be topological group and suppose that $\pi: G \to G'$ is group isomorphism. If π is continuous and $E \subset G$ is a topological bounded subset of G, then $\pi(E)$ is topological bounded subset of G'.

Proof. Let V' be a neighborhood of $e' \in G'$. Then $\pi^{-1}(V')$ is a neighborhood of e. Since E is a topological bounded subset of G, there is a natural number n such that $E \subseteq (\pi^{-1})^n (V') \subseteq \pi^{-1} (V'')$ implies that $\pi(E) \subset V^{'^n}$. Thus $\pi(E)$ is a topological bounded subset of G'.

Definition 2.11. Let G and G' be topological group. We say that the mapping $\pi: G \to G'$ is compact, if for every topological bounded subset $E \subseteq G$, $\pi(E)$ is relatively compact.

For example, every identity mapping from P/N into itself is compact operator.

Theorem 2.12. Let G and G' be topological group and suppose that $\pi: G \to G'$ is continuous and group isomorphism. If G' is locally compact, then π is compact.

Proof. Let $E \subseteq G$ be topological bounded. By using Theorem 2.10, $\pi(E)$ is topological bounded subset of G' and by using Theorem 2.6, $\pi(E)^-$ is compact, it follows that π is compact.

3. REFERENCES

[1] G. Beer, S. Levi, Strong uniform continuty, J. Math. Anal. Appl. 350 (2009)568-589.

[2] E. Hewitt, K. A. Ross, Abstract harmonic analysis, Springer, Berlin, Vol I 1963.

[3] S. Ferri, S. Hernandez, T.S. Wu Continuity in topological groups, Topology and its Applications 153 (2006) 1451-1457.

[4] J. Ren, X. Zhang Topologies on homeomorphism spaces of certain metric spaces, J. Math. Anal. Appl. 318 (2006)32-36.