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Abstract

In this paper, new powerful modification of homotopy analysis technique (NMHAM) was
submitted to create an approximate solution of nonhomogeneous nonlinear ordinary and partial
differential equations. The NMHAM is a combination of the new technique of homotopy analysis
method(NHAM) [4] and the new technique of homotopy analysis method(nHAM) [7].Three
illustrative examples are employed to illustrate the accuracy and computational proficiency of this
approach. The outcomes uncover that the NMHAM is more accurate than the NHAM and nHAM.

Keywords: Modified homotopy analysis method, Taylor Series, Nonhomogeneous differential
equations.

1. Introduction

In recent years, many engineers and scientists in various sciences like Mathematics,
Biology,Physics, and particularly in branches of engineering like Fluid mechanics, Numerical
calculations in Aerospace and Electronics are faced with nonlinear phenomena and many nonlinear
problems. Since solving nonlinear problems plays a crucial role in various fields of engineering
and science, Scientists are interested in obtaining techniques for solving nonlinear problems and
have performed extensive researchers to achieve nonlinear problem solving techniques. As solving
nonlinear problems are generally difficult and achieving their exact solutions are hard, various
approximate methods have been developed to solve them.

The homotopy analysis technique (HAM), proposed by Liao [14], is a powerful technique to solve
non-linear problems. In recent years, this method has been effectively applied to numerous
problems in science and engineering [15-27]. All of these successful applications verified the
validity, effectiveness and flexibility of the HAM. Recently, some modifications of HAM have
published to facilitate and accurate the calculations and accelerate the rapid convergence of the
series solution and reduce the size of work [1-13]. It is the aim of this paper to submit a new
powerful modification of the HAM. The NMHAM is a combination of the two modifications of
homotopy analysis technique (NHAM) [4] and the nHAM [7]. The NMHAM demonstrates an
accurate solution if compared with the NHAM and nHAM, and therefore it has been shown that
to be computationally efficient in applied fields. The obtained results suggest that this newly
improvement technique introduces a powerful improvement for solving nonlinear problems.

2. The New Technique of Homotopy Analysis Method (NHAM)

Consider the following nonlinear differential equation

Asian Online Journals (www.ajouronline.com) 12


mailto:shn_n2002@yahoo.com
mailto:haider.4ali91@gmail.com

Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 — 564.X)
Volume 06 — Issue 02, October 2018

N[y(x, t)] = f(x, ) (2.1)

Where N is a nonlinear operator , (x,t) means independent variables,y(x,t) is an unknown
function, and f(x, t) is a non-homogeneous terms.

The non-homogeneous terms f(x, t) in (2.1) can be expressed in Taylor series based on a kind of
continuous homotopy mapping with respect to q, where q € [0,1] is an embedding
parameter, f (x, t) —» u(x,t; q) as [4]

uCot; @) =X750f° g = "0 0q’ + 7 0gt + - + £, (G 0q" + - (2.2)
Where
rs 1 d(rs+1) rs
08 = Slif o) e+ i [ 0] 0
1 d(rs+s—1) rsts—1
(rs+s—1)! [dt(THS—l)f(x’ t)]t=0 t( i ) (2-3)

We note that £,.°(x,t) depend on the order of the differential equation s.For example,
rl[dtrf(x )]

2r 2r+1)
s=2= fT = Zr'[d f( t)] tzr (2r+1)' [:t(2r+1)f( t)] t(zrﬂ)'

s=1=f'

1
s—4=»ﬁ 4'dth(xt)] t4 +

1 [atr+D (4r+1)
Gr+D) [dt(‘”“)f (x, t)]t=o ‘

1 d(4r+2) 4r+2 1 d(4T+3) 4r+3
(4r+2)! [dt(4r+2) ( t)] (T ) +(4r+3)' [dt(4r+3) ( t)] (T .

Give us a chance to develop the supposed zeroth deformation equation as follows
(1 =@L[(x, ;@) — yo(x, t) | = qhH (x, ON[S(x, t; @) — p(x, t; q)] (2.4)

Where q € [0,1] is an embedding parameter, lh # 0 is an auxiliary parameter, L is an auxiliary
linear operator, y,(x,t) is the initial guesses of y(x, t) ,6(x,t; q) is an unknown functions , and
H (x, t) denotes a nonzero auxiliary function. It is evident that when q = 0 and q = 1 becomes

8(x,60) =yo(x,t) , 6(x t;1) =y(x,t) (2.5)

respectively. In this way as q increments from 0 to 1, the solution 6 (x, t; q) varies from the initial
guessy,(x, t) to the solution y(x, t). Having the freedom to select y,(x,t) ,L,h,and H (x,t),
we can expect that every one of them can be chosen with the goal that the solution §(x, t; q) of
(2.4) exists for q € [0,1] .

Expanding §(x, t; @) in Taylor series, we have
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8(x, t;q) = yo(x, t) + X2 - (x, O, (2.6)
Where

_ 19ms(xta)
R T I 27)

Next, recall that h,H (x,t),y,(x,t) ,and L are select with the end goal that the series (2.6)
converges at g=1 and that

y(x,t) = 6(x,t;1) = yo(x, t) + X725 v, (x, 1) (2.8)
Let y.(x,t) = {yo(x, ), y1(x, ), ¥2(x, £), ... y (x, D) }. (2.9)

Differentiating equation (2.4) for r times with respect to q and afterward setting q=0 and lastly
dividing the resulting equation by r! , we have the so-called rth order deformation equation as
follows:

L[yr (x, t) - Xryr—l (x: t)] = h}[(x' t)Rr (:VT—l(x' t)), (210)
where
— _ 1 TN(N[SCeta)]—p(x.t)
R, (5 0) = 5, 5 o (2.11)
0, r <1,
And X;. = {1 r>1.

It ought to be underscored that y,(x, t) for r > 1 is administered by the equation (2.10) with the
boundary conditions that come from the original problem.

The homogenous part of equation (2.1) can be written as [7]
Ly(x,t) + Ay(x, t) + By(x,t) =0,

y(x,0) = go(x),

dy (x,t)

P 91(%),

(2.12)

%=1y (x,t)
gk—1 t=0 = gk—l(x)'

WhereL= 0%/at* , k = 1,2, ... is the highest partial derivative with respect to t, A is a linear
term , and B is a nonlinear term.

Hence, the equation (2.1) will be take the form:
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Ly(x,t) + Ay(x,t) + By(x,t) = u(x, t; q),
y(x, O) = gO(x):

dy (x,t)

ot o 91(%),

(2.13)

%1y (x,t)
—_— = gr_1(x).
gk-1 =0 Ik 1( )

And the so-called zero-order deformation equation (2.4) becomes

(A =@L[o(x, t;q) — yo(x,0)] = qhH (x, t) (Ly(x, t) + Ay(x,t) + By(x,t) —ulx, t;q))

(2.14)
Hence, the " order deformation equation will becomes:
LIy, (x,6) = Xy, (6, )] = hH (x, 1) (Lyr—1(x, 1) + Ay, (6, 0) + B (x, 1) —
fr-1"(x,)) (2.15)
Therefore
Yr (6, ) = Xpyr -1 (6 8) + WL H Cx, ) (Ly,—1 (6, ) + Ay 1 (6, 8)
+B (y2, 106 0)) = frt (0 D)] (216)
Such that
L=/ [- f()dtdt cdt + o th 1+ otk T+t g (2.17)
ktlmes
Where c;, ¢y, ..., C are constants.
To solve (2.13) by means of HAM , we select the following initial approximation
Yo, t) = go(x) + g1 (Ot + g2 ()5 + - + grq () s (2.18)
Let H(x,t) =1, by means of (2.17) and (2.18); then (2.16) becomes
%0 t) =Xy, o) +h [ [ ) () =180 4 Ay, (61 + B (6, 1) —
fr—1’(x,7)) drdt ... d7. (2.19)

ktimes

Now we have
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¥ t) = X,y 1 Go ) + b f [ i 2D e e ) S Ay, G D)

ktimes
B(y;2(x, D) — fr_1°(x, 7)) drdr ...dz
ktimes
Ay, k-1 ak—l e ,
ro1 (6 t) + ey (6, 6) =y, g (x,0) + 2100 g 0 ey
t pt t
+hf [ f, Ay (1) + By, 1(x,1D) — fr_1°(x,7)) drdr ... dt (2.20)
ktimes
Forr=1,X,.=0,and
ayo(x 0) , t292y00) | ., t57h 9k lyg(x0)
Yolx,0) + ==+ 2z T (k—1)!  atk-T
2 —
= 90(0) + g1t + g% + - + gror (D iy (2.21)
=Yo (x’ t)
Substituting this equality into (2.20), we obtain
y1(x,t) = ]]nfot fot fot Ay (x, ) + B (x, 7)) —fo* (x, 7)) drdr ... dt (2.22)
ktimes
Forr>1,X,=1, and
9y (x,0 2%y, (x,0) 9% Dy, (x,0)
¥ (x,0) = 0,250 = 0, ZXED = 0. IR = 0. (2.23)
Substituting this equality into (2.20), we obtain
v t) = L+ h)y,_ () +h [ [ .. [ (Ay_1(x,7) + B (x, 7)) —
00 0
fro1’(x,7))drdt ... dT (2.24)

ktimes

The NHAM is powerful when k = 1, and the solution of NHAM can be written as the following
series:

Y0 t;h) = Y, (x, 65 h) = X0 yi(x, 6 ) (2.25)

But when k > 2, there are too many additional terms where harder and more timeconsuming
computations are performed.so, the closed form solution needs more numbers of iteration.

3. The New Modified Homotopy Analysis Method (NMHAM)

When k > 2, we rewrite (2.1) as in the following system:
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ye =yl
vyl =y2
(3.2)
yik — 1} = —Ay(x,t) = By(x,t) + f (x, ©)
Set the initial approximation
Yo(x,t) = go(x)
y1o(x, t) = g1(x)
(3.2)

yik =1} (x, 1) = gi-1(x)

We note that the order of differential equation (3.1) is the first order (s = 1) Since all the equations
of the system (3.1) of the first order then The non-homogeneous terms f (x, t) in the last equation
of (3.1) can be expressed in Taylor series based on a kind of continuous homotopy mapping with
respect to q,f (x,t) = u(x,t; q) as the following

poot;q) = Yo £ o )q" = £ 0 + £ Oq + - + £, 0 @ + - (3.3)
Where
£t =12 f(x, t)]tzotr (3.4)

Using the iteration formulas (2.22) and (2.24) as follows:
y1(x,t) = hfot(—ylo(x, r))dr

y1,(x,t) = ]hlfot(—yzo(x, 1))dr

(3.5)
ylk = 13000 = b f; (47000 + By (6. 0) — fo' (6, 1)) dr
Forr>1,X,=1, and
yr(x; 0)=0 y1.(x,0) =0 'yzr(x' 0) =0, 1y{k - 1}r(x' 0)=0. (36)

Substituting in (2.20),we obtain
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%06 6) = (L + W)y, _1(x, 0) + b f; (~y1,_1(x,7))dr,

¥, (6 6) = (1 + W)yl (6 ) + h [ (-y2,_, (x, 0))dr,

yik — 1406 t) = A+ Wylk — 1}, (6 0) +h [{(Ay,1 (D) + B(yr-1(x,7))
~fr1' (,D)dr
4. Applications

4.1 Example 1 Consider a Duffings equation [4]

2
43y -2y° = f(1)

dt?

Equation (4.1) with the initial condition

y(0)=0 ,y (0)=1,

and f(t) = cos(t) sin(2t) has the exact solution
y(t) = sin(t)

The problem (4.1)-(4.2) solved by ( NHAM )[4].

(3.7)

(4.1)

4.2)

(4.3)

In order to solve (4.1)—(4.2) by the proposed approach (NMHAM) we construct the following

system:

yt(t) = U(t),

v (t) = =3y +2y° + u(t; )

with the following initial conditions :

Yo(®) =0,1(8) =1

We expand the homotopy u(t; q) in powers of the parameter q with s=1:
uE @) =i £ Od" = fo' (O9° + £ (DG + -+ £ (O + -
Where

dr

£1®) = 2 Ol

such that
f'®=0 ' =2t L' ®O=0 f£'®O=-2t, ..

and the following linear operators:
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Ly(t) =28 1y(r) = 28 (4.8)
Ay, () =3y, () — f1,_,(®
By,_1(t) = =2 X120 Yr—1-i Xj=0 ¥} Vi (4.9)
we obtain
»(@® =h[(-v(@)de
v (t) = ]hlfot(3yO(T) —2y3(1) — fo' (1))dr (4.10)

Now, for r>2, we get

%(®) =1 +h)y,_(6) +h [ (—v,_, (D) dr,

v, (8) = 1+ 0w, (&) + h [, (Ay,_1 (1) + By,_1 (1)) dt (4.11)
And the following results are obtained:

y1(t) = —ht

vi(t) =0

y2(t) = =h(1 + h)t

vy (1) = h(—¢? - 1)

y3(®) = —h(1 + h)%t + b + 22
Then, the series solution of the NMHAM is:

y(th) = Yp(t,h) = X y; (¢, ) (4.12)

Equation (4.12) is an approximation solutions for the problem (4.1)-(4.2) depending on the
parameter l . To determine the valid region of , the h-curves given by the 7""-order NMHAM at
different values of tare drawn in figure (1).
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Figure(1) h-curve for NMHAM approximation solutionsY; (t) of problem (4.1) —(4.2)at different values of t.

Figure(2) show the comparison between Y, of NMHAM and Y, of NHAM at0 < t < 3.5 with the
exact solution(4.3) .Figure (3) comparison between Y, , Y,0of NMHAM and Y, of NHAM with the
exact solution (4.3) at 0 < t < 3 which indicates that the speed of convergence of NMHAM s
faster in comparison of NHAM.

The absolute error of the 7" order approximate solution of NMHAM compared with 7" order
approximate solution of NHAM are calculated by the formula

Absolute Error (A.E) = |Yexaet — Yapprox |

Figures (4) show that the series solution Y, obtained by NMHAM at 0 <t < 0.5 is more
accuratefrom the series solution Y- obtained byNHAM.Figures (5) show that the series solution Y,
obtained by NMHAM is more accurate from the series solution Y,obtained by NHAM at larger t
(0.5 < t < 1). Figures (6) show that the series solution Y, obtained by NMHAM at 0 <t < 0.5
is moreand faster converge from the series solution Y, obtained by NHAM. Figures (7) show that
the series solution Y, obtained by NMHAM is moreand faster converge from the series solution
Y,obtained by NHAM at larger t (0.5 <t < 1).

solutions

(OS]
-
=

paa — > NHAM

-,

. . . . . b et
05 10 15 20 25 30 Hi

Figure(2): Comparison of the 7™ order approximations of NMHAM and NHAM at 0 < ¢ < 3.5,lh = —1 with the
exact solution(4.3).
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solutions

20F

15 —  Exact
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¥y NMHAN

0t e
ZoS \ L ¥; NHAM

Figure(3):Comparison of Y; , Y,of NMHAM and Y, of NHAM with the exact solution (4.3)at0 <t < 3,h = —1.
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Figure(4):Absolute errors of Y;0of NMHAM and Y; of NHAMat0 <t < 0.5,h =—1.
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Figure(5):Absolute errors of Y,of NMHAM andY,; of NHAMat0.5 <t <1,h=-1.
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Figure(6):Absolute errors of Y;of NMHAM and ¥, of NHAM at 0 <t < 0.5,h = —1
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Figure(7):Absolute errors of Y,of NMHAM and Y; of NHAM at 0.5 <t < 1,h = -1

Table (1) show the comparison of Y, of NMHAM ,NHAM and nHAM ,with the exact solution(4.3)
at different values of ¢t .Table (2) show the comparison between the absolute errors of Y, of
NMHAM ,NHAM and nHAM at different values of t. Tables (1) and (2) indicate that the series
solution obtained by NMHAM is more accurate from the series solution obtained by NHAM and
the series solution obtained by nHAMis divergent for all ¢t except t = 0 and the absolute error
monotonously increases very quickly.

Tablel: Comparison of the 7" order approximations of NMHAM , 7" order approximations of NHAM and 7" order
approximations of nHAM with the exact solution.

t exact NMHAM NHAM nHAM

0 0 0 0 0

0.2 0.198669 0.198669 0.198669 —2.376868
0.4 0.389418 0.389418 0.389419 —4.709543
0.6 0.564642 0.564642 0.564703 —6.959303
0.8 0.717356 0.717356 0.718162 —9.10208

1 0.841471 0.841468 0.847508 —11.144744
1.2 0.932039 0.932025 0.963396 —13.152658
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14 0.985449 0.985393 1.111087 —15.294508
1.6 0.999574 0.999389 1.424605 —17.912939
1.8 0.973848 0.973317 2.459322 —21.629384
2 0.909297 0.907937 7.466350 —27.489478

Table2: Comparisonof the Absolute errors of 7" order approximations of NMHAM , 7" order approximations of

NHAM and 7™ order approximations of nHAM with the exact solution

t A.E NMHAM A.E NHAM A.E nHAM
0 0 0 0
0.2 1.410399 x 10712 3.083948 x 10~° 2.575537
0.4 7.213487 x 10710 1.575220 x 10~ 5.098961
0.6 2.768075 x 1078 0.000060 7.523945
0.8 3.677249 x 1077 0.000805 9.819431
1 2.730839 X 107° 0.006037 11.986216
1.2 1.403454 x 1075 0.031357 14.084697
1.4 5.593443 x 1075 0.125637 16.279957
1.6 1.850367 x 10~* 0.425032 18.912513
1.8 5.308537 x 10~* 1.485475 22.603231
2 1.360919 x 1073 6.557053 28.398776

4.2 Example 2 Consider a nonlinear ordinary differential equation[28]
Veee = tyee + t2y? = f(t)
Subject the initial condition

y(0)=0,y,(0) =1 ,y,(0) =1

The exact solution when f(t) = tsin(t) — cos(t) + t2sin(t)? is
y(t) = sin(t) .
4.2.1. NHAM solution: To solve (4.13-4.14) by means of the NHAM, expanding the

homotopy u(x, t; q) in powers of the parameter q with s = 3:
Q) =3O =£°Oa° + A7 Oq + -+ £ Oqh + -,

where
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1 d(37‘+1) d(3r
f;" ( ) 3r! [dt:’,r f(t)]t 0 t3r + (3T+1)' [dt(37‘+1) f(t)] t(3r+1) m [dt(3r+2) f(t)]t t(3r+2)
(4.17)
such that
3 _ f 3 _ it“ 3 _ 233t 1783t8 3 _ 11509¢t10
for@®)=-1+ - h ) = - ) = 0 T 200 3 ) = seme00 - (418)

Let we choose the initial approximation
yo(t) = ¢, (4.19)

And the linear operator

3 .
L[s(t @] = o (4.20)
with the property L[c] = 0, (4.21)

wherec is a constant of integration.
The nonlinear operator to the problem (4.13-4.14) under NHAM define as

9368 925(¢;
N[8(t; q)] = 228D _ 200D 4 y252(4 q) — u(t; q), (4.22)

ot3 ot?

According to (2.4), the zero order deformation equation with the initial approximation (4.19) and
linear operator (4.20) with (4.21) will be:

(1 = qL[6(& q) — yo(D)] = qhN[3(¢; @) — u(t; @], (4.23)
and the rth order deformation equation as follows:

L[yr (t) - Xryr—l (t)] = ]hl:Rr (yr—l (t))) (424)
with the initial conditions y,.(x,0) = 0, ¥,.,(x,0) = 1 and y,,(x,0) = 0

Where

Rr()’r—l(t)) = ytttr_l( ) tyttr 1(t) + tz z 0 ViVr—1-i f3r_1(t) (425)

Now, the solution of (4.24)for r > 1 becomes

Yr (t) = XrYr—l(t) + ]hlL_ljer (yr—l(t)) (426)

And the following results are obtained:
y1(t) = —— T3 (140 - 21¢2 + 4t%)

() = — he3(140 — 2182 + 4¢%) + h(— 2 + | h ——+i+i— C )
Y2 T 840 5040 140 3780 19800 180180
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Then, the series solution of the NHAM is:
y(t,h) = Yz(t,h) = XXy, (t,h) (4.27)

Equation (4.27) is an approximation solutions for the problem (4.13)-(4.14) depending on the
parameters k.

4.2.2. NMHAM solution: in order to solve (4.13) )-(4.14)by the proposed approach (NMHAM)
we construct a system of differential equations as follows :

y:(t) = v(t)
v (t) = z(t) (4.28)
z,(6) = t z(t) — t?y*(t) + u(t; q)

with the following initial conditions:

Yo() =0
vo(t) =1 (4.29)
Zo(t) =0

Expanding the homotopy u(t; q) in powers of the parameter q with s = 1:

pEQ =3 f O = £ O + A Oq + -+ £ ©Oq" + -, (4.30)
Where

A CEE-Ji0) T (431)
such that

Mo =-1 Alo=0, £©O=20 (4.32)

And the following linear operators:

9z (t)

ay (t v (t
Ly(® =22 Lo(@®) = =2 Lz(t) =27

Ay, (®) = —f'._,(®

(4.33)
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By, _1(x,t) = —t z,_1(t) + t* er_ol YiVr—1-i (4.34)
We obtain

y1(®) = h fj (—ve(D))dr

v, (6) = h [, (=2 (x))de

z1(t) = h [} (—tzo(7) + 2302 (0) — fo ())de (4.35)
Now, forr > 2, we get

% = (1 +0)y,_1 () +h [, (~v,_1 (0))dr

v, (8) = (1 + W)v,_1(t) + h [, (=2, (©))dr

2,() = (1+h)z,_4(t) +h [ (Ayr_l(r) + B(yr_l(r))) dr (4.36)
And the following results are obtained:

y1(t) = =ht, v1(t) =0, z;(t) = Tt

Y2(8) = =h(1 + I)t, v () = —Th2e2, 2y(t) = h(1 + hye — =5,

ys(8) = ~h(1 + W% + 25,

Then, the series solution of the NMHAM is:
y(t,h) = Yz(t,h) = fzo y; (t, ) (4.37)

Equation (4.37) is an approximation solutions for the problem (4.13)-(4.14) depending on the
parameter h. To determine the valid region of h, the h-curves given by the 7" order of NMHAM
at different values of t are drawn in figure (8).
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-1.0 -0.3

Figure(8): h-curve for NMHAM approximation solutionsY, of problem (4.13)-(4.14) at different values of ¢t .

Figure(9) shows the comparison between Y, of NMHAM and Y, of NHAM at 0 < t < 2, with the
exact solution(4.15) which indicates that the series solution Y, obtained by MNHAMis more
accurate from the series solution Y, obtained by NHAM.Figure (10) shows the comparison of Yy ,
Y-of NMHAM and Y, of NHAM with the exact solution (4.15) at 0 < t < 1.5 which indicates
that the speed of convergence of NMHAM is faster and more convergence in comparison of
NHAM.Figures (11) shows that the series solution ¥, obtained by NMHAM at 0 <t < 1 is more
accurate from the series solutionY, obtained by NHAMFigures (12) shows that the series
solutionY, obtained by NMHAM is more and faster convergence from the series solutionY,
obtained by NHAMat0 <t < 1.

solutions

1.0

0EE
0.6 L
04l
01t

o NHAM

0l 04 06 O0FB 10 11 14

Figure(9): Comparison of the 71" order approximations of NMHAM and NHAM at 0 < t < 1.5 ,lh = —1with the

exact solution(4.15).

solutions

1.0 L ———

0Bl Exact

0.6 - ¥y NMHAM
o4l Yg NMHEAM
0.2 = FyHHAM

01 04 06 08 10 12 14

Figure(10):Comparison of Y, and Y; of NMHAM and Y, of NHAM with the exact solution (4.15) at

0<t<15h=-1
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Figure(11): The absolute errors of the 7" order approximations of NMHAM and NHAM at0 <t <1,h = —1.

Absolwts Emor

0.020 |

0.015

0.010

0.005

— A Fj| ¥z NMHAM))

o - AE{¥-NHAM)

Figure(12):The absolute errors of the 6™ order approximations of NMHAM and the 7" order approximations of

NHAMato <t <1,h=-1.

Table (3) show the comparison of Y, of NMHAM ,NHAM and nHAM ,with the exact solution
(4.15) at different values of of t .Table (4) shows the comparison of the absolute errors of Y, of
NMHAM ,NHAM and nHAM at different values of of t. Tables (3) and (4) indicate that the series
solution obtained by NMHAM is more accurate from the series solution obtained by NHAM and
the series solution obtained by nHAM is divergent.

Table3: Comparison of the 7" order approximations of NMHAM, NHAM and nHAM with the exact solution (4.15).

t Exact NMHAM NHAM nHAM

0 0 0 0 0
0.1 0.099833 0.099833 0.099839 —350.966
0.2 0.198669 0.198669 0.198762 —701.933
0.3 0.295520 0.295520 0.295974 —1052.902
0.4 0.389418 0.389418 0.390805 —1403.874
0.5 0.479426 0.479426 0.482704 —1754.851
0.6 0.564642 0.564646 0.571229 —2105.831
0.7 0.644218 0.644230 0.656040 —2456.816
0.8 0.717356 0.717397 0.736880 —2807.808
0.9 0.783327 0.783442 0.813554 —3158.805
1 0.841471 0.841760 0.885889 —3509.807
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Table4: Comparison of the absolute errors of 7" order approximations of NMHAM , NHAM and nHAM with the
exact solution(4.15).

t A.E NMHAM A.E NHAM A.E nHAM
0 0 0 0
0.1 3.275435 x 10713 6.012234 x 107 351.066
0.2 1.671137 x 10710 9.274402 x 1075 702.132
0.3 6.386566 x 107° 4.535345 x 10~* 1053.198
0.4 8.435251 x 1078 0.0013867 1053.198
0.5 6.217155 x 1077 0.003279 1755.329
0.6 3.165286 x 107 0.006587 2106.396
0.7 1.247286 x 107> 0.011823 2457.461
0.8 4.071103 x 1075 0.019524 2808.526
0.9 1.149799 x 10 0.030227 3159.588
1 2.894769 x 10~* 0.044418 3510.648

4.3 Example 3 Consider non-linear Klein-Gordon equation as follows [1]

Yee = Yo +¥° = f(x, 1) (4.38)
Subject the initial condition

y(x,0) =0, y(x,0)=0 (4.39)
The exact solution when f(x,t) = 2x? — 2t? + x*t* is

y(x,t) = x*t? (4.40)

4.3.1. NHAM solution: To solve (4.38-4.39) by means of the NHAM, expanding the
homotopy u(x, t; q) in powers of the parameter q with s = 2:

uie t;q) = X0 £.2 (6 O = f,° 00 0)q° + 700 Q! + -+ + £,7(x, D@ + -+, (4.41)
Where

1 qd@r+1)

£2t) = [dtnf(x )]e=o t*" + o e f (6 O]e= o t& D (4.42)
such that
ol t) =2x% i) = =2t 200 t) = t*x* A4 (xt) =0, ... (4.43)

Let we choose the initial approximation

yo(x,t) =0, (4.44)
And the linear operator
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828 (xt;
LIS (x, & q)] = 225D (4.45)
with the propertyL[c] = 0, (4.46)
wherec is a constant of integration.

The problem (4.38-4.39) under NHAM suggests to define a nonlinear operator as

2 . 2 .
N[S(x, t; q)] = L00bD 906w 4 g2 o) — (i, t: q), (4.47)

ot? dx?2

According to (2.4), the zero order deformation equation with the initial approximation (4.44) and
linear operator (4.45) with (4.46) will be:

(1= qL[6(x, t; @) — yo(x,t) ] = qhN[3(x, t; q) — p(x, & @], (4.48)
and the rth order deformation equation as follows:

L[yr (X, t) - Xryr—l(x' t)] = h:Rr (yr—l (X, t)), (449)
with the initial conditions y,.(x,0) = 0 and y,.,(x,0) = 0

Where

:RT (yr—l (x, t)) = yttr_l (x, t) - yxxr_l (x' t) + Zf;()l ViVr—1-i — fzr_l(x' t) (450)

Now, the solution of (4.49)for r = 1 becomes

Yr (x' t) = Xryr—l (x' t) + ]hlL_er (yr—l (x' t)) (451)
We now successively obtain
yi(x,t) = —ht?x?

Y206, £) = —ht?x? + < h((1 + h)t* — 6ht2x?

Then, the series solution of the NHAM is:
y(x,t,h) = Yp(x, t,h) = ¥R )y, (x,t, ) (4.52)

Equation (4.52) is a family of approximation solutions to the problem (4.38)-(4.39) in terms of the
convergence parameters .

4.3.2. NMHAM solution: in order to solve (4.38) )-(4.39)by the proposed approach (NMHAM)
we construct the following system:

yt(xf t) = U(X, t) )]
V(X 1) = Yo —y* +u(x, t; q) (4.53)

with the following initial conditions
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yo(X, t) =0 ,Uo(x, t) =0 (454)

Expanding the homotopy u(x, t; q) in powers of the parameter q with s = 1:

poot;q) =320 £ o) = fo (6 Oq° + £ 00O + -+ £, (L Oq* + -, (4.55)
Where

£1o0t) = G O] (4.56)
such that

=2 Alen=0 Hen=5 Ax=0, ..

and the following linear operators:

LyCe,t) = 299 [p(x, ) = 200 (4.57)
ot ot

Ay, _1(t) = _yxxr_l(x: t) — flr_l(xr t)

By,_1(x,t) = X230 ViVr-1-i (4.58)

we obtain

y1(x,t) = ]hlfot(—vo(x, 1))dzt

v1(x,t) = ]hlfot(—yOxx (6, 7) + Y2 (6, 1) — fo' (x,7))dT (4.59)

Now, for r > 2, we get

% (6 t) = A+ 0y, (6 + h [ (—v,_1 (x, 1) dr,

v (x,t) =1 +h)v,_1(x,t) + ]}nfOt(Ayr_l (x,7) + By,_1(x, 7)) dt (4.60)

And the following results are obtained:

yi(x,t) =0, vi(x,t) = —2htx?

yo(x,t) = h?t?x?, v,(x,t) = —2h(1 + h)tx?
y3(x, t) = h?(1 + h)t?x? + h(ht?x? + h?t?x?)

Then, the series solution of the NMHAM is:
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Yoot ) = Yp(x, 6, h) = B0y (x, 6, ) (4.61)

Equation (4.61) is an approximation solutions for the problem (4.38)- (4.39) depending on the
parameter h.To determine the valid region of h , the h-curves given by the 5"-order NMHAM at
different values of x and t are drawn in figure (13).

1 ) N ¥3(1.0,0.8)
1ot \ %(130.)
03t Y:(1.7,0.6)

f -14 -12 -10 -0B 06 -04 -02

Figure (13): lh-curve for NMHAM approximation solutionsYs of problem (4.38)-(4.39) at different values of x and t.

Figures (14) show that the series solution Ys obtained by NMHAM at 0 <t < 1.5,x =0.2 is
more accurate from the series solution Ysobtained by NHAM.Figures (15) show that the series
solution Y; obtained by NMHAM is more accurate from the series solution Ysobtained by NHAM
at larger t(1.5 <t < 3,x = 0.2).

Abenlwts Emor
5x1077 } :
51077 | '
4.x1077 | — A E[¥; NMHAM)
2.x107% } - . AE(¥: NHAM)
— ;

2 04 06 08 10 12 1.

Figure(14):The absolute errors of Y;of NMHAM and NHAM at 0 < ¢t < 1.5,x = 0.2,]lh = —0.99 .

Abzolute Ermor
000008 |
000005
000004 |- , = AE[¥; NMHAM)
000002 | r -- AE(¥; NHAM)
= ¢

1B 20 22 24 16 28 30

Figure(15):The absolute errors of Y;of NMHAM and NHAM at 1.5 <t <3,x = 0.2,]h = —-0.99 .
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Table (5) show the comparison ofYs of NMHAM ,NHAM and nHAM ,with the exact solution
(4.40).Table (6) shows the comparison between the absolute errors ofY; of NMHAM ,NHAM and
nHAM. Tables (5) and (6) indicate that the series solution obtained by NMHAM is more accurate
from the series solution obtained by NHAM and nHAM.

Table5: Comparison of the 5™ order approximations of NMHAM , NHAM and nHAM at different values of tand
xwith the exact solution(4.40).

X t exact NMHAM NHAM nHAM
0.2 0 0 0 0 0
0.5 0.01 0.009999 0.010000 0.010002
1 0.04 0.039999 0.040000 0.040339
1.5 0.09 0.089999 0.090000 0.097930
2 0.16 0.159999 0.160000 0.236556
2.5 0.25 0.249999 0.250004 0.698986
0.6 0 0 0 0 0
0.5 0.09 0.089999 0.090000 0.090078
1 0.36 0.359999 0.360000 0.366891
1.5 0.809999 0.809999 0.8100000 0.925110
2 1.44 1.439999 1.440000 2.374766
2.5 2.25 2.249999 2.250004 7.228376
1 0 0 0 0 0
0.5 0.25 0.249999 0.249999 0.250549
1 1 0.999999 0.999999 1.040476
1.5 2.25 2.249999 2.249999 2.812751
2 4 3.999999 3.999998 7.961905
2.5 6.25 6.249999 6.249990 25.287156

Table 6:Comparison of the absolute errors of 5™ order approximations of NMHAM , NHAM and nHAM with the

exact solution (4.40).

X t A.E NMHAM A.E NHAM A.E nHAM
02| 0 0 0 0
0.5 | 7.291737 x 1071% | 4.391019 x 10~13 | 1.949405 x 10~°
1 | 1.166678 x 10712 | 4.496417 x 1071° | 3.390476 x 10~*
1.5 | 5.906234 x 10712 | 2.592851 x 1078 0.007930
2 | 1.866693 x 1011 | 4.604308 x 1077 0.076556
2.5 | 4557352 x 10711 | 4.288093 x 107 0.448986
06| 0 0 0 0
0.5 | 7.294165 x 10714 | 3.717859 x 10713 | 7.754464 x 10~5
1 | 1.166733 x 10712 | 3.806401 x 10710 0.006891
1.5 | 5.906164 x 10712 | 2.194879 x 1078 0.115110
2 | 1.866729 x 1071 | 3.897552 x 1077 0.934766
2.5 | 4557421 x 10711 | 3.629856 x 107° 4978376
1 0 0 0 0
0.5 | 7.291389 x 10~'* | 1.007444 x 10712 | 5.487351 x 104
1 |1.166622 x 1072 | 1.031669 x 107° 0.040476
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1.5 | 5907275 x 107'? | 5949359 x 10~8 0.562751
2 1.866685 x 107! | 1.056486 x 10~° 3.961905
2.5 | 4557509 x 10! | 9.839353 x 10~° 19.037156

5. Conclusion

In this article, new powerful modification of homotopy analysis method (NMHAM) was proposed
to create an approximate solution of nonhomogeneous nonlinear ordinary and partial differential
equations. The main advantage of the NMHAM is that it requires less computational work
compared with the NHAM and nHAM in finding approximate solutions for nonlinear
nonhomogeneous differential equations. Illustrative examples show that the series solution
obtained by NMHAM is more accurate from the series solution obtained byNHAM andnHAM.
Therefore, depending on the results of this work, we can say that the NMHAM is more effective
than NHAM and nHAM.
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