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Abstract 

In this paper, new powerful modification of homotopy analysis technique (NMHAM) was 

submitted to create an approximate solution of nonhomogeneous nonlinear ordinary and partial 

differential equations. The NMHAM is a combination of the new technique of homotopy analysis 

method(NHAM) [4] and the new technique of homotopy analysis method(nHAM) [7].Three 

illustrative examples are employed to illustrate the accuracy and computational proficiency of this 

approach. The outcomes uncover that the NMHAM is more accurate than the NHAM and nHAM. 

Keywords: Modified homotopy analysis method, Taylor Series, Nonhomogeneous differential 

equations. 
 

1. Introduction 

In recent years, many engineers and scientists in various sciences like Mathematics, 

Biology,Physics, and particularly in branches of engineering like Fluid mechanics, Numerical 

calculations in Aerospace and Electronics are faced with nonlinear phenomena and many nonlinear 

problems. Since solving nonlinear problems plays a crucial role in various fields of engineering 

and science, Scientists are interested in obtaining techniques for solving nonlinear problems and 

have performed extensive researchers to achieve nonlinear problem solving techniques. As solving 

nonlinear problems are generally difficult and achieving their exact solutions are hard, various 

approximate methods have been developed to solve them. 

The homotopy analysis technique (HAM), proposed by Liao [14], is a powerful technique to solve 

non-linear problems. In recent years, this method has been effectively applied to numerous 

problems in science and engineering [15-27]. All of these successful applications verified the 

validity, effectiveness and flexibility of the HAM. Recently, some modifications of HAM have 

published to facilitate and accurate the calculations and accelerate the rapid convergence of the 

series solution and reduce the size of work [1-13]. It is the aim of this paper to submit a new 

powerful modification of the HAM. The NMHAM is a combination of the two modifications of 

homotopy analysis technique (NHAM) [4] and the nHAM [7]. The NMHAM demonstrates an 

accurate solution if compared with the NHAM and nHAM, and therefore it has been shown that 

to be computationally efficient in applied fields. The obtained results suggest that this newly 

improvement technique introduces a powerful improvement for solving nonlinear problems. 

 

2. The New Technique of Homotopy Analysis Method (NHAM) 
 

Consider the following nonlinear differential equation 
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Where ℕ is a  nonlinear  operator ,  (𝑥, 𝑡) means  independent  variables,𝑦(𝑥, 𝑡) is an unknown 

function, and  𝑓(𝑥, 𝑡) is a non-homogeneous terms. 

The non-homogeneous terms 𝑓(𝑥, 𝑡) in (2.1) can be expressed in Taylor series based on a kind of 

continuous homotopy mapping with respect to 𝕢, where 𝕢 ∈ [0,1]  is an embedding 

parameter,𝑓(𝑥, 𝑡) → 𝜇(𝑥, 𝑡; 𝕢) as [4] 

Where 

We note that  𝑓𝑟
𝑠(𝑥, 𝑡)  depend on the order of the differential equation s.For example, 

 

Give us a chance to develop the supposed zeroth deformation equation as follows 

Where 𝕢 ∈ [0,1] is an embedding parameter, 𝕙 ≠ 0 is an auxiliary parameter,  L is an auxiliary 

linear operator,  y0(x, t) is the initial guesses of 𝑦(𝑥, 𝑡) ,𝛿(x, t; 𝕢) is  an unknown functions , and  

ℋ(𝑥, 𝑡) denotes a nonzero auxiliary function. It is evident that when 𝕢 = 0 and 𝕢 = 1 becomes  

respectively. In this way as 𝕢 increments from 0 to 1, the solution 𝛿(𝑥, 𝑡; 𝕢) varies from the initial 

guess𝑦0(𝑥, 𝑡)  to the solution 𝑦(𝑥, 𝑡).  Having  the  freedom  to  select 𝑦0(𝑥, 𝑡)  , L , 𝕙 ,and ℋ(𝑥, 𝑡),  

we can expect that every one of them can be chosen with the goal that  the solution 𝛿(𝑥, 𝑡; 𝕢) of 

(2.4) exists for 𝕢 ∈ [0,1] . 

Expanding 𝛿(𝑥, 𝑡; 𝕢) in Taylor series, we have  

ℕ[𝑦(𝑥, 𝑡)] = 𝑓(𝑥, 𝑡)                                                                                                                  (2.1)   

𝜇(𝑥, 𝑡; 𝕢) =  𝑓𝑟
𝑠∞

𝑟=0 (𝑥, 𝑡)𝕢𝑟   = 𝑓0
𝑠(𝑥, 𝑡)𝕢0 + 𝑓1

𝑠(𝑥, 𝑡)𝕢1 + ⋯  +   𝑓𝑛
𝑠(𝑥, 𝑡)𝕢𝑛 + ⋯          (2.2) 

𝑓𝑟
𝑠(𝑥, 𝑡) =

1

𝑟𝑠 !
 

𝑑𝑟𝑠

𝑑𝑡𝑟𝑠𝑓(𝑥, 𝑡) 
𝑡=0

𝑡𝑟𝑠 +
1

(𝑟𝑠+1)!
 

𝑑(𝑟𝑠+1)

𝑑𝑡 (𝑟𝑠+1)
𝑓(𝑥, 𝑡) 

𝑡=0
𝑡(𝑟𝑠+1) + ⋯  

+
1

(𝑟𝑠+𝑠−1)!
 

𝑑(𝑟𝑠+𝑠−1)

𝑑𝑡 (𝑟𝑠+𝑠−1)
𝑓(𝑥, 𝑡) 

𝑡=0
𝑡(𝑟𝑠+𝑠−1)                                                                             (2.3) 

𝑠 = 1 ⟹ 𝑓𝑟
1 = 1

𝑟 !
 𝑑𝑟

𝑑𝑡𝑟
𝑓(𝑥, 𝑡) 

𝑡=0
𝑡𝑟 , 

𝑠 = 2 ⟹ 𝑓𝑟
2  = 1

2𝑟 !
 𝑑2𝑟

𝑑𝑡2𝑟𝑓(𝑥, 𝑡) 
𝑡=0

𝑡2𝑟 + 1

(2𝑟+1)!
 𝑑(2𝑟+1)

𝑑𝑡(2𝑟+1)𝑓(𝑥, 𝑡) 
𝑡=0

𝑡(2𝑟+1),  

𝑠 = 4 ⟹ 𝑓𝑟
2 =

1

4𝑟 !
 

𝑑4𝑟

𝑑𝑡4𝑟𝑓(𝑥, 𝑡) 
𝑡=0

𝑡4𝑟 +
1

(4𝑟+1)!
 

𝑑(4𝑟+1)

𝑑𝑡(4𝑟+1)
𝑓(𝑥, 𝑡) 

𝑡=0
𝑡(4𝑟+1) 

+
1

(4𝑟+2)!
 

𝑑(4𝑟+2)

𝑑𝑡(4𝑟+2)
𝑓(𝑥, 𝑡) 

𝑡=0
𝑡(4𝑟+2)  +

1

(4𝑟+3)!
 

𝑑(4𝑟+3)

𝑑𝑡(4𝑟+3)
𝑓(𝑥, 𝑡) 

𝑡=0
𝑡(4𝑟+3) 

(1 − 𝕢)L[𝛿(𝑥, 𝑡; 𝕢) − 𝑦0(𝑥, 𝑡) ] = 𝕢𝕙ℋ(𝑥, 𝑡)ℕ[δ(𝑥, 𝑡; 𝕢) − 𝜇(𝑥, 𝑡; 𝕢)]                                 (2.4) 

𝛿(𝑥, 𝑡; 0) = 𝑦0(𝑥, 𝑡)  ,   𝛿(𝑥, 𝑡; 1) = 𝑦(𝑥, 𝑡)                                                                              (2.5)  
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Where 

Next, recall that  𝕙 , ℋ(𝑥, 𝑡), 𝑦0(𝑥, 𝑡) ,and L are select with the end goal that the series (2.6) 

converges at 𝕢=1 and that  

Differentiating equation (2.4) for 𝑟 times with respect to 𝕢 and afterward setting  𝕢=0 and lastly 

dividing the resulting equation by 𝑟! , we have the so-called 𝑟th order deformation equation as 

follows: 

 

 

It ought to be underscored that  𝑦𝑟(𝑥, 𝑡) for 𝑟 ≥ 1 is administered by the equation (2.10) with the 

boundary conditions that come from the original problem. 

The homogenous part of equation (2.1) can be written as [7] 

WhereL= 𝜕𝑘 𝜕𝑡𝑘⁄  , 𝑘 = 1 , 2, … is the highest partial derivative with respect to t , A  is a linear 

term , and B is a nonlinear term. 

Hence, the equation (2.1) will be take the form: 

𝛿(𝑥, 𝑡; 𝕢) = 𝑦0(𝑥, 𝑡) +  𝑦𝑟(𝑥, 𝑡)𝕢𝑟+∞
𝑟=1 ,                                                                                   (2.6) 

𝑦𝑟(𝑥, 𝑡) =
1

𝑟!

𝜕𝑟𝛿(𝑥 ,𝑡;𝕢)

𝜕𝕢𝑟
 
𝕢=0

.                                                                                                          (2.7) 

𝑦(𝑥, 𝑡) = 𝛿(𝑥, 𝑡; 1) = 𝑦0(𝑥, 𝑡) +  𝑦𝑟(𝑥, 𝑡)+∞
𝑟=1                                                                          (2.8) 

Let  𝑦𝑒(𝑥, 𝑡) = {𝑦0(𝑥, 𝑡), 𝑦1(𝑥, 𝑡), 𝑦2(𝑥, 𝑡), … 𝑦𝑒(𝑥, 𝑡)}.                                                            (2.9) 

𝐿[𝑦𝑟(𝑥, 𝑡) − 𝑋𝑟𝑦𝑟−1(𝑥, 𝑡)] = 𝕙ℋ(𝑥, 𝑡)ℛ𝑟(𝑦𝑟−1         (𝑥, 𝑡)),                                                         (2.10) 

where 

ℛ𝑟 𝑦𝑟−1         (𝑥, 𝑡) =
1

(𝑟−1)!

𝜕𝑟−1(ℕ[𝛿(𝑥 ,𝑡 ,𝕢)]−𝜇(𝑥 ,𝑡;𝕢))

𝜕𝕢𝑟−1  
𝕢=0

                                                                (2.11) 

And 𝑋𝑟 =  
0 ,             𝑟 ≤ 1,
1 ,            𝑟 > 1.

 

𝐿𝑦(𝑥, 𝑡) + Αy(𝑥, 𝑡) + Βy(𝑥, 𝑡) = 0, 

𝑦(𝑥, 0) = 𝑔0(𝑥), 

                                                            
𝜕𝑦 (𝑥 ,𝑡)

𝜕𝑡
 
𝑡=0

= 𝑔1(𝑥), 

                                                                              ⋮                                                                   (2.12) 

                                                       
𝜕𝑘−1𝑦(𝑥 ,𝑡)

𝜕𝑘−1  
𝑡=0

= 𝑔𝑘−1(𝑥). 
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And the so-called zero-order deformation equation (2.4) becomes 

      

Hence, the 𝑟𝑡ℎ  order deformation equation will becomes: 

Therefore 

 

Such that 

Where  𝑐1, 𝑐2, … , 𝑐𝑘 are constants. 

To solve (2.13) by means of HAM , we select the following initial approximation 

Let  ℋ(𝑥, 𝑡) = 1 , by means of (2.17) and (2.18); then (2.16) becomes  

Now we have 

𝐿𝑦(𝑥, 𝑡) + Αy(𝑥, 𝑡) + Βy(𝑥, 𝑡) = 𝜇(𝑥, 𝑡; 𝕢), 

𝑦(𝑥, 0) = 𝑔0(𝑥), 

                                                      
𝜕𝑦 (𝑥 ,𝑡)

𝜕𝑡
 
𝑡=0

= 𝑔1(𝑥), 

                                                                        ⋮                                                                         (2.13) 

                                                 
𝜕𝑘−1𝑦(𝑥 ,𝑡)

𝜕𝑘−1  
𝑡=0

= 𝑔𝑘−1(𝑥). 

(1 − 𝕢)𝐿[𝛿(𝑥, 𝑡; 𝕢) − 𝑦0(𝑥, 𝑡)] = 𝕢𝕙ℋ(𝑥, 𝑡)(𝐿𝑦(𝑥, 𝑡) + 𝐴𝑦(𝑥, 𝑡) +  𝐵𝑦(𝑥, 𝑡) − 𝜇(𝑥, 𝑡; 𝕢)) 

                                                                                                                                               (2.14)  

𝐿[𝑦𝑟(𝑥, 𝑡) − 𝑋𝑟𝑦𝑟−1(𝑥, 𝑡)]  =  𝕙ℋ(𝑥, 𝑡) (𝐿𝑦𝑟−1(𝑥, 𝑡) + 𝐴𝑦𝑟−1(𝑥, 𝑡) +  𝐵(𝑦𝑟−1         (𝑥, 𝑡)) −

                                                     𝑓𝑟−1
𝑠(𝑥, 𝑡))                                                                                (2.15) 

 𝑦𝑟(𝑥, 𝑡) = 𝑋𝑟𝑦𝑟−1(𝑥, 𝑡) + 𝕙𝐿−1[ℋ(𝑥, 𝑡)(𝐿𝑦𝑟−1(𝑥, 𝑡) + 𝐴𝑦𝑟−1(𝑥, 𝑡) 

                                            +𝐵  𝑦𝜆𝑟−1
         (𝑥, 𝑡) − 𝑓𝑟−1

𝑠(𝑥, 𝑡))]                                                    (2.16) 

𝐿−1(. ) = ∫ ∫ ⋯ ∫ (. )𝑑𝑡𝑑𝑡 ⋯ 𝑑𝑡       
𝑘𝑡𝑖𝑚𝑒𝑠

+ 𝑐1𝑡𝑘−1 + 𝑐2𝑡𝑘−1 + ⋯ + 𝑐𝑘  .                                           (2.17) 

𝑦0(𝑥, 𝑡) = 𝑔0(𝑥) + 𝑔1(𝑥)𝑡 + 𝑔2(𝑥)𝑡2

2!
+ ⋯ + 𝑔𝑘−1(𝑥) 𝑡𝑘−1

(𝑘−1)!
 .                                                  (2.18) 

𝑦𝑟(𝑥, 𝑡) = 𝑋𝑟𝑦𝑟−1(𝑥, 𝑡) + 𝕙 ∫ ∫ …
𝑡

0
∫ (

𝜕𝑘𝑦𝑟−1(𝑥 ,𝜏)

𝜕𝜏𝑘

𝑡

0

𝑡

0
+ 𝐴𝑦𝑟−1(𝑥, 𝜏) +  𝐵 𝑦𝑟−1         (𝑥, 𝜏) −

                     𝑓𝑟−1
𝑠(𝑥, 𝜏)) 𝑑𝜏𝑑𝜏 … 𝑑𝜏       

𝑘𝑡𝑖𝑚𝑒𝑠

.                                                                                         (2.19) 
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Substituting this equality into (2.20), we obtain    

 

 

The NHAM is powerful when 𝑘 = 1, and the solution of NHAM can be written as the following 

series: 

 

3. The New Modified Homotopy Analysis Method (NMHAM) 

When 𝑘 ≥ 2, we rewrite (2.1) as in the following system:  

𝑦𝑟(𝑥, 𝑡) = 𝑋𝑟𝑦𝑟−1(𝑥, 𝑡) + 𝕙 ∫ ∫ …
𝑡

0
∫

𝜕𝑘𝑦𝑟−1(𝑥 ,𝜏)

𝜕𝜏𝑘

𝑡

0

𝑡

0
𝑑𝜏𝑑𝜏 …𝑑𝜏       

𝑘𝑡𝑖𝑚𝑒𝑠

+ 𝕙 ∫ ∫ …
𝑡

0
∫ 𝐴𝑦𝑟−1(𝑥, 𝜏) +

𝑡

0

𝑡

0

                    𝐵 𝑦𝑟−1         (𝑥, 𝜏) − 𝑓𝑟−1
𝑠(𝑥, 𝜏)) 𝑑𝜏𝑑𝜏 … 𝑑𝜏       

𝑘𝑡𝑖𝑚𝑒𝑠

  

= 𝑋𝑟𝑦𝑟−1(𝑥, 𝑡) + 𝕙𝑦𝑟−1(𝑥, 𝑡) − 𝕙(𝑦𝑟−1(𝑥, 0) + 𝑡
𝜕𝑦𝑟−1(𝑥 ,0)

𝜕𝑡
+ ⋯ +

𝑡𝑘−1

(𝑘−1)!

𝜕𝑘−1𝑦𝑟−1(𝑥 ,0)

𝜕𝑡𝑘−1
) 

               + 𝕙 ∫ ∫ …
𝑡

0
∫ (𝐴𝑦𝑟−1(𝑥, 𝜏) +  𝐵 𝑦𝑟−1         (𝑥, 𝜏) − 𝑓𝑟−1

𝑠(𝑥, 𝜏)) 𝑑𝜏𝑑𝜏 … 𝑑𝜏       
𝑘𝑡𝑖𝑚𝑒𝑠

𝑡

0

𝑡

0
                  )2.20) 

 For 𝑟 = 1 , 𝑋𝑟 = 0 ,and  

                𝑦0(𝑥, 0) + 𝑡
𝜕𝑦0(𝑥 ,0)

𝜕𝑡
+

𝑡2

2!

𝜕2𝑦0(𝑥 ,0)

𝜕𝑡2
+ ⋯ +

𝑡𝑘−1

(𝑘−1)!

𝜕𝑘−1𝑦0(𝑥 ,0)

𝜕𝑡𝑘−1
  

        = 𝑔0(𝑥) + 𝑔1(𝑥)𝑡 + 𝑔2(𝑥)𝑡2

2!
+ ⋯ + 𝑔𝑘−1(𝑥) 𝑡𝑘−1

(𝑘−1)!
                                                         (2.21) 

        = 𝑦0(𝑥, 𝑡)  

𝑦1(𝑥, 𝑡) = 𝕙 ∫ ∫ …
𝑡

0
∫ 𝐴𝑦0(𝑥, 𝜏) + 𝐵 𝑦0     (𝑥, 𝜏) 

𝑡

0

𝑡

0
−𝑓0

𝑠(𝑥, 𝜏)) 𝑑𝜏𝑑𝜏 … 𝑑𝜏       
𝑘𝑡𝑖𝑚𝑒𝑠

                       (2.22)                                                                     

For 𝑟 > 1 , 𝑋𝑟 = 1 ,   and    

𝑦𝑟(𝑥, 0) = 0 ,
𝜕𝑦𝑟(𝑥 ,0)

𝜕𝑡
= 0 ,

𝜕2𝑦𝑟(𝑥 ,0)

𝜕𝑡2 = 0 , ⋯,
𝜕(𝑘−1)𝑦𝑟(𝑥 ,0)

𝜕𝑡(𝑘−1) = 0 .                                                (2.23) 

Substituting this equality into (2.20), we obtain    

𝑦𝑟(𝑥, 𝑡) = (1 + 𝕙)𝑦𝑟−1(𝑥, 𝑡) + 𝕙 ∫ ∫ …
𝑡

0
∫ (𝐴𝑦𝑟−1(𝑥, 𝜏) +  𝐵 𝑦𝑟−1         (𝑥, 𝜏) 

𝑡

0

𝑡

0
−   

                  𝑓𝑟−1
𝑠(𝑥, 𝜏)) 𝑑𝜏𝑑𝜏 … 𝑑𝜏       

𝑘𝑡𝑖𝑚𝑒𝑠

                                                                                             (2.24) 

𝑦(𝑥, 𝑡; 𝕙) = 𝑌𝑟(𝑥, 𝑡; 𝕙) =  𝑦𝑖(𝑥, 𝑡; 𝕙)𝑟
𝑖=0                                                                                (2.25) 

But when  𝑘 ≥ 2 , there are too many additional terms where harder and more timeconsuming 

computations are performed.so, the closed form solution needs more numbers of iteration. 
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We note that the order of differential equation (3.1) is the first order (𝑠 = 1) Since all the equations 

of the system (3.1)  of the first order then The non-homogeneous terms 𝑓(𝑥, 𝑡) in the last equation 

of (3.1) can be expressed in Taylor series based on a kind of continuous homotopy  mapping  with 

respect  to 𝕢,𝑓(𝑥, 𝑡) → 𝜇(𝑥, 𝑡; 𝕢) as the following 

Using the iteration formulas (2.22) and (2.24) as follows: 

 

Substituting in (2.20),we obtain    

𝑦𝑡 = 𝑦1 

𝑦1𝑡 = 𝑦2 

                                                                              ⋮                                                                     (3.1) 

                                                            𝑦{𝑘 − 1}𝑡 = −𝐴𝑦(𝑥, 𝑡) − 𝐵𝑦(𝑥, 𝑡) + 𝑓(𝑥, 𝑡) 

Set the initial approximation 

                                                                 𝑦0(𝑥, 𝑡) = 𝑔0(𝑥)  

                                                               𝑦10(𝑥, 𝑡) = 𝑔1(𝑥)    

                                                                                ⋮                                                                   (3.2) 

                                                     𝑦 𝑘 − 1 0(𝑥, 𝑡) = 𝑔𝑘−1(𝑥)  

𝜇(𝑥, 𝑡; 𝕢) =  𝑓𝑟
1∞

𝑟=0 (𝑥, 𝑡)𝕢𝑟   = 𝑓0
1(𝑥, 𝑡)𝕢0 + 𝑓1

1(𝑥, 𝑡)𝕢1 + ⋯  + 𝑓𝑛
1(𝑥, 𝑡)𝕢𝑛 + ⋯           (3.3) 

Where 

𝑓𝑟
1 = 1

𝑟 !
 𝑑𝑟

𝑑𝑡𝑟
𝑓(𝑥, 𝑡) 

𝑡=0
𝑡𝑟                                                                                                              (3.4) 

                                                 𝑦1(𝑥, 𝑡) = 𝕙 ∫  −𝑦10(𝑥, 𝜏) 𝑑𝜏
𝑡

0
  

                                               𝑦11(𝑥, 𝑡) = 𝕙∫  −𝑦20(𝑥, 𝜏) 𝑑𝜏
𝑡

0
  

                                                               ⋮                                                                                    (3.5)      

                                   𝑦 𝑘 − 1 1(𝑥, 𝑡) = 𝕙 ∫  𝐴𝑦0(𝑥, 𝜏) + 𝐵 𝑦0(𝑥, 𝜏) − 𝑓0
1(𝑥, 𝜏) 𝑑𝜏

𝑡

0
  

For 𝑟 > 1 , 𝑋𝑟 = 1 ,   and    

𝑦𝑟(𝑥, 0) = 0 ,𝑦1𝑟(𝑥, 0) = 0 , 𝑦2𝑟(𝑥, 0) = 0, ⋯,𝑦 𝑘 − 1 𝑟(𝑥, 0) = 0 .                                     (3.6) 
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4. Applications 

4.1 Example 1 Consider a Duffings equation [4] 

The problem (4.1)-(4.2) solved by ( NHAM )[4].  

In order to solve (4.1)–(4.2) by the proposed approach (NMHAM) we construct the following 

system:  

We expand the homotopy 𝜇(𝑡; 𝕢) in powers of the parameter 𝕢 with s=1: 

and the following linear operators: 

                      𝑦𝑟(𝑥, 𝑡) = (1 + 𝕙)𝑦𝑟−1(𝑥, 𝑡) + 𝕙 ∫  −𝑦1𝑟−1(𝑥, 𝜏) 𝑑𝜏 ,
𝑡

0
  

                    𝑦1𝑟(𝑥, 𝑡) = (1 + 𝕙)𝑦1𝑟−1(𝑥, 𝑡) + 𝕙 ∫ (−𝑦2𝑟−1(𝑥, 𝜏))𝑑𝜏
𝑡

0
 ,  

                                     ⋮                                                                                                              (3.7) 

𝑦 𝑘 − 1 𝑟(𝑥, 𝑡) = (1 + 𝕙)𝑦 𝑘 − 1 𝑟−1(𝑥, 𝑡) + 𝕙 ∫ (𝐴
t

0
𝑦𝑟−1(𝑥, 𝜏) +   𝐵 𝑦𝑟−1(𝑥, 𝜏)   

                                          −𝑓𝑟−1
1(𝑥, 𝜏))𝑑𝜏  

𝑑2𝑦

𝑑𝑡2
+ 3𝑦 − 2𝑦3 = 𝑓(𝑡)                                                                                                              (4.1) 

Equation (4.1) with the initial condition 

y(0)=0  ,𝑦 ′(0)=1 ,                                                                                                                        (4.2) 

and 𝑓(𝑡) = cos(𝑡) sin(2𝑡)  has the exact solution 

𝑦(𝑡) = sin(𝑡)                                                                                                                            (4.3) 

𝑦𝑡(𝑡) = 𝑣(𝑡),               

𝑣𝑡(𝑡) = −3𝑦 + 2𝑦3 + 𝜇(𝑡; 𝕢)                                                                                                   (4.4)  

with the following initial conditions : 

𝑦0(𝑡) = 0 , 𝑣0(𝑡) = 1                                                                                                                 (4.5) 

𝜇(𝑡; 𝕢) =  𝑓𝑟
1∞

𝑟=0 (𝑡)𝕢𝑟 = 𝑓0
1(𝑡)𝕢0 + 𝑓1

1(𝑡)𝕢1 + ⋯ + 𝑓𝑛
1(𝑡)𝕢𝑛 + ⋯                                 (4.6)                                                          

Where  

𝑓𝑟
1(𝑡) =

1

𝑟!
[

𝑑𝑟

𝑑𝑡𝑟 𝑓(𝑡)]𝑡=0 𝑡
𝑟                                                                                                          (4.7)     

such that        

       𝑓0
1(𝑡) = 0    , 𝑓1

1(𝑡) = 2𝑡     , 𝑓2
1(𝑡) = 0     , 𝑓3

1(𝑡) = −
7

3
𝑡3  , ….   
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And the following results are obtained: 

 

⋮ 

Then, the series solution of the NMHAM is: 

Equation (4.12) is an approximation solutions for the problem (4.1)-(4.2) depending on the 

parameter 𝕙  . To determine the valid region of  , the 𝕙-curves given by the 7th-order NMHAM at 

different values of  t are drawn in figure (1).  

       𝐿𝑦(𝑡) =
𝜕𝑦 (𝑡)

𝜕𝑡
  , 𝐿𝑣(𝑡) =

𝜕𝑣(𝑡)

𝜕𝑡
                                                                                             (4.8) 

       𝐴𝑦𝑟−1(𝑡) = 3𝑦𝑟−1(𝑡) − 𝑓1
𝑟−1

(𝑡)  

       𝐵𝑦𝑟−1(𝑡) = −2  𝑦𝑟−1−𝑖  𝑦𝑗 𝑦𝑖−𝑗
𝑖
𝑗 =0

𝑟−1
𝑖=0                                                                            (4.9) 

we  obtain 

𝑦1(𝑡) = 𝕙 ∫  −𝑣0(𝜏) 𝑑𝜏
𝑡

0
  

𝑣1(𝑡) = 𝕙 ∫ (3𝑦0(𝜏)
𝑡

0
− 2𝑦0

3(𝜏) − 𝑓0
1(𝜏))𝑑𝜏                                                                         (4.10) 

Now, for  r ≥ 2, we get  

𝑦𝑟(𝑡) = (1 + 𝕙)𝑦𝑟−1(𝑡) + 𝕙 ∫ (−𝑣𝑟−1(𝜏))
𝑡

0
𝑑𝜏 ,   

𝑣𝑟(𝑡) = (1 + 𝕙)𝑣𝑟−1(𝑡) + 𝕙 ∫ (𝐴𝑦𝑟−1(𝜏)
𝑡

0
+ 𝐵𝑦𝑟−1(𝜏)) 𝑑𝜏                                                  (4.11)  

𝑦1(𝑡) = −𝕙𝑡  

𝑣1(𝑡) = 0  

𝑦2(𝑡) = −𝕙(1 + 𝕙)𝑡  

𝑣2(𝑡) = 𝕙(−𝑡2 − 3 𝕙𝑡2

2
)  

𝑦3(𝑡) = −𝕙(1 + 𝕙)2𝑡 + 𝕙(𝕙𝑡3

3
+ 𝕙2𝑡3

2
)  

𝑦(𝑡, 𝕙) ≅ 𝑌𝑅(𝑡, 𝕙) =  𝑦𝑖
𝑅
𝑖=0 (𝑡, 𝕙)                                                                                         (4.12) 
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Figure(2) show the comparison between 𝑌7 of NMHAM and 𝑌7 of NHAM at0 ≤ 𝑡 ≤ 3.5 with  the 

exact solution(4.3) .Figure (3) comparison between 𝑌6  , 𝑌4of NMHAM and 𝑌7 of NHAM with the 

exact solution (4.3) at 0 ≤ 𝑡 ≤ 3 which indicates that the speed of convergence of NMHAM is 

faster in comparison of NHAM. 

The absolute error of the 7th order approximate solution of NMHAM compared with 7th order 

approximate solution of NHAM are calculated by the formula 

Figures (4) show that the series solution 𝑌7 obtained by NMHAM at 0 ≤ 𝑡 ≤ 0.5 is more 

accuratefrom the series solution 𝑌7obtained byNHAM.Figures (5) show that the series solution 𝑌7  

obtained by NMHAM is more accurate from the series solution 𝑌7obtained  by NHAM at larger 𝑡 

(0.5 ≤ 𝑡 ≤ 1). Figures (6) show that the series solution 𝑌6 obtained by NMHAM at 0 ≤ 𝑡 ≤ 0.5 

is moreand faster converge from the series solution 𝑌7obtained by NHAM. Figures (7) show that 

the series solution 𝑌6 obtained by NMHAM is moreand faster converge from the series solution 

𝑌7obtained by NHAM at larger 𝑡 (0.5 ≤ 𝑡 ≤ 1). 

 

Figure(2): Comparison of the 7th order approximations of NMHAM and  NHAM at 0 ≤ 𝑡 ≤ 3.5, 𝕙 = −1  with  the 

exact solution(4.3). 

Figure(1) 𝕙-curve for NMHAM approximation solutionsY7(t) of problem (4.1) –(4.2)at different values of  t . 

Absolute Error (𝐴. 𝐸) =  𝑌𝑒𝑥𝑎𝑐𝑡 − 𝑌𝑎𝑝𝑝𝑟𝑜𝑥   
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Figure(5):Absolute errors of 𝑌7of NMHAM and𝑌7 of NHAMat0.5 ≤ 𝑡 ≤ 1, 𝕙 = −1 . 

Figure(3):Comparison of 𝑌6   , 𝑌4of NMHAM and 𝑌7of NHAM with the exact solution (4.3) at 0 ≤ 𝑡 ≤ 3, 𝕙 = −1. 

Figure(4):Absolute errors of 𝑌7of NMHAM and 𝑌7 of NHAMat0 ≤ 𝑡 ≤ 0.5, 𝕙 = −1 . 
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Table (1) show the comparison of 𝑌7 of NMHAM ,NHAM and nHAM ,with the exact solution(4.3) 

at different values of 𝑡 .Table (2) show the comparison between the absolute errors of 𝑌7 of 

NMHAM ,NHAM and nHAM at different values of 𝑡. Tables (1) and (2) indicate that the series 

solution obtained by NMHAM is more accurate from the series solution obtained  by NHAM and 

the series solution obtained by nHAMis divergent for all 𝑡 except 𝑡 = 0 and the absolute error  

monotonously increases very quickly. 

 

 
t exact NMHAM NHAM nHAM 

0 0 0 0 0 

0.2 0.198669 0.198669 0.198669 −2.376868 

0.4 0.389418 0.389418 0.389419 −4.709543 

0.6 0.564642 0.564642 0.564703 −6.959303 

0.8 0.717356 0.717356 0.718162 −9.10208 

1 0.841471 0.841468 0.847508 −11.144744 

1.2 0.932039 0.932025 0.963396 −13.152658 

Figure(6):Absolute errors of  𝑌6of NMHAM and 𝑌7 of NHAM at 0 ≤ 𝑡 ≤ 0.5, 𝕙 = −1 

Figure(7):Absolute errors of 𝑌6of NMHAM and 𝑌7 of NHAM at 0.5 ≤ 𝑡 ≤ 1, 𝕙 = −1 

Table1: Comparison of the 7th order approximations of NMHAM , 7th  order  approximations of NHAM and 7th  order  

approximations of nHAM with  the exact solution. 
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1.4 0.985449 0.985393 1.111087 −15.294508 

1.6 0.999574 0.999389 1.424605 −17.912939 

1.8 0.973848 0.973317 2.459322 −21.629384 

2 0.909297 0.907937 7.466350 −27.489478 

 

 

t A.E NMHAM A.E NHAM A.E nHAM 

0 0 0 0 

0.2 1.410399 × 10−12 3.083948 × 10−9 2.575537 

0.4 7.213487 × 10−10 1.575220 × 10−6 5.098961 

0.6 2.768075 × 10−8 0.000060 7.523945 

0.8 3.677249 × 10−7 0.000805 9.819431 

1 2.730839 × 10−6
 0.006037 11.986216 

1.2 1.403454 × 10−5 0.031357 14.084697 

1.4 5.593443 × 10−5 0.125637 16.279957 

1.6 1.850367 × 10−4 0.425032 18.912513 

1.8 5.308537 × 10−4 1.485475 22.603231 

2 1.360919 × 10−3 6.557053 28.398776 

 

 4.2    Example 2 Consider a nonlinear ordinary differential equation[28] 

𝑦𝑡𝑡𝑡 − 𝑡𝑦𝑡𝑡 + 𝑡2𝑦2 = 𝑓(𝑡)                                                                                                    (4.13) 

Subject the initial condition 

𝑦(0) = 0, 𝑦𝑡(0) = 1   ,𝑦𝑡𝑡(0) = 1                                                                                       (4.14) 

The exact solution when  𝑓(𝑡) = 𝑡 sin(𝑡) − cos(𝑡) + 𝑡2 sin(𝑡)2 is 

𝑦(𝑡) = sin(𝑡) .                                                                                                                     (4.15) 

4.2.1. NHAM solution: To solve (4.13-4.14) by means of the NHAM, expanding the 

homotopy 𝜇(𝑥, 𝑡; 𝕢) in powers of the parameter 𝕢 with 𝑠 = 3: 

where 

Table2: Comparisonof the Absolute errors of 7th order approximations of NMHAM , 7th  order  approximations of 

NHAM and 7th  order  approximations of nHAM with  the exact solution 

𝜇(𝑡; 𝕢) =  𝑓𝑟
3∞

𝑟=0 (𝑡)𝕢𝑟 = 𝑓0
3(𝑡)𝕢0 + 𝑓1

3(𝑡)𝕢1 + ⋯ + 𝑓𝑛
3(𝑡)𝕢𝑛 + ⋯,                              (4.16) 
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such that  

Let we choose the initial approximation 

   
And the linear operator 

 

with the property 𝐿[𝑐] = 0,                                                                                                       (4.21) 

where𝑐 is a constant of integration. 

The nonlinear operator to the problem (4.13-4.14) under NHAM define as 

According to (2.4), the zero order deformation equation with the initial approximation (4.19) and 

linear operator (4.20) with (4.21) will be: 

and the 𝑟th order deformation equation as follows: 

with the initial conditions 𝑦𝑟(𝑥, 0) = 0, 𝑦𝑟𝑡
(𝑥, 0) = 1 and 𝑦𝑟𝑡𝑡

(𝑥, 0) = 0 

Where 

Now, the solution of (4.24)for 𝑟 ≥ 1 becomes 

 

And the following results are obtained: 

 

𝑓𝑟
3(𝑡) =

1

3𝑟!
[

𝑑3𝑟

𝑑𝑡3𝑟 𝑓(𝑡)]𝑡=0 𝑡
3𝑟 +

1

(3𝑟+1)!
[

𝑑(3𝑟+1)

𝑑𝑡 (3𝑟+1) 𝑓(𝑡)]𝑡=0 𝑡
(3𝑟+1) 1

(3𝑟+2)!
[

𝑑(3𝑟+2)

𝑑𝑡 (3𝑟+2) 𝑓(𝑡)]𝑡=0 𝑡
(3𝑟+2)                                                                                                

                                                                                                                                                  (4.17) 

𝑓0
3(𝑡) = −1 +

3𝑡2

2
    , 𝑓1

3(𝑡) =
19𝑡4

24
    , 𝑓2

3(𝑡) = −
233𝑡6

720
+

1783𝑡8

40320
     , 𝑓3

3(𝑡) = −
11509𝑡10

3628800
 , ….    (4.18)  

𝑦0(𝑡) = 𝑡,                                                                                                                                 (4.19)    

  𝐿[𝛿(𝑡; 𝕢)] =
𝜕3𝛿(𝑡;𝕢)

𝜕𝑡3
                                                                                                               (4.20) 

ℕ[𝛿(𝑡; 𝕢)] =
𝜕3𝛿(𝑡;𝕢)

𝜕𝑡3
− 𝑡

𝜕2𝛿(𝑡;𝕢)

𝜕𝑡2
+ 𝑡2𝛿2(𝑡; 𝕢) − 𝜇(𝑡; 𝕢),                                                      (4.22) 

(1 − 𝕢)L[𝛿(𝑡; 𝕢) − 𝑦0(𝑡)] = 𝕢𝕙ℕ[δ(𝑡; 𝕢) − 𝜇(𝑡; 𝕢)],                                                          (4.23) 

𝐿[𝑦𝑟(𝑡) − 𝑋𝑟𝑦𝑟−1(𝑡)] = 𝕙ℛ𝑟(𝑦𝑟−1         (𝑡)),                                                                                 (4.24) 

ℛ𝑟 𝑦𝑟−1         (𝑡) = 𝑦ttt r−1
(𝑡) − 𝑡 𝑦𝑡𝑡 𝑟−1

(𝑡) + 𝑡2  𝑦𝑖𝑦𝑟−1−𝑖
𝑟−1
𝑖=0 − 𝑓3

𝑟−1
(𝑡)                              (4.25) 

𝑦𝑟(𝑡) = 𝑋𝑟𝑦𝑟−1(𝑡) + 𝕙𝐿−1ℛ𝑟 𝑦𝑟−1         (𝑡)                                                                                  (4.26) 

𝑦1(𝑡) =
1

840
𝕙𝑡3(140 − 21𝑡2 + 4𝑡4)  

𝑦2(𝑡) =
1

840
𝕙𝑡3(140 − 21𝑡2 + 4𝑡4) + 𝕙(−

19𝑡7

5040
+ 𝕙(

𝑡3

6
−

𝑡5

24
+

𝑡7

140
+

𝑡9

3780
−

𝑡11

19800
+

𝑡13

180180
))   
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⋮ 

Then, the series solution of the NHAM is: 

Equation (4.27) is an approximation solutions for the problem (4.13)-(4.14) depending on the 

parameters 𝕙. 

4.2.2. NMHAM solution: in order to solve (4.13) )-(4.14)by the proposed approach (NMHAM) 

we construct a system of differential equations as follows : 

with the following initial conditions: 

 

Expanding the homotopy 𝜇(𝑡; 𝕢) in powers of the parameter 𝕢 with 𝑠 = 1: 

And the following linear operators: 

 

𝑦(𝑡, 𝕙) ≅ 𝑌𝑅(𝑡, 𝕙) =  𝑦𝑖
𝑅
𝑖=0 (𝑡, 𝕙)                                                                                         (4.27) 

𝑦𝑡(𝑡) = 𝑣(𝑡)  

𝑣𝑡(𝑡) = 𝑧(𝑡)                                                                                                                             (4.28) 

𝑧𝑡(𝑡) = 𝑡 𝑧(𝑡) − 𝑡2𝑦2(𝑡) + 𝜇(𝑡; 𝕢)   

𝑦0(𝑡) = 0  

𝑣0(𝑡) = 1                                                                                                                           (4.29) 

𝑧0(𝑡) = 0  

𝜇(𝑡; 𝕢) =  𝑓𝑟
1∞

𝑟=0 (𝑡)𝕢𝑟 = 𝑓0
1(𝑡)𝕢0 + 𝑓1

1(𝑡)𝕢1 + ⋯ + 𝑓𝑛
1(𝑡)𝕢𝑛 + ⋯,                              (4.30) 

Where  

𝑓𝑟
1(𝑡) =

1

𝑟!
[

𝑑𝑟

𝑑𝑡𝑟
𝑓(𝑡)]𝑡=0 𝑡

𝑟                                                                                                        (4.31)     

such that        

𝑓0
1(𝑡) = −1,     𝑓1

1(𝑡) = 0,        𝑓2
1(𝑡) =

3𝑡2

2
,⋯                                                                     (4.32) 

𝐿𝑦(𝑡) =
𝜕𝑦 (𝑡)

𝜕𝑡
, 𝐿𝑣(𝑡) =

𝜕𝑣(𝑡)

𝜕𝑡
   ,𝐿𝑧(𝑡) =

𝜕𝑧 (𝑡)

𝜕𝑡
                                                                           (4.33) 

𝐴𝑦𝑟−1(𝑡) = −𝑓1
𝑟−1

(𝑡)  
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Now, for 𝑟 ≥ 2 , we get 

And the following results are obtained: 

 

⋮ 

Then, the series solution of the NMHAM is: 

Equation (4.37) is an approximation solutions for the problem (4.13)-(4.14) depending on the 

parameter 𝕙. To determine the valid region of 𝕙, the  𝕙-curves  given by  the 7th order of NMHAM 

at different values of  𝑡 are drawn in figure (8). 

 

 

𝐵𝑦𝑟−1(𝑥, 𝑡) = −𝑡 𝑧𝑟−1(𝑡) + 𝑡2  𝑦𝑖𝑦𝑟−1−𝑖
𝑟−1
𝑖=0                                                                         (4.34) 

We obtain 

𝑦1(𝑡) = 𝕙 ∫  −𝑣0(𝜏) 𝑑𝜏
𝑡

0
  

𝑣1(𝑡) = 𝕙 ∫  −𝑧0(𝜏) 𝑑𝜏
𝑡

0
  

𝑧1(𝑡) = 𝕙 ∫ (−𝑡𝑧0(𝜏)
𝑡

0
+ 𝑡2𝑦0

2(𝜏) − 𝑓0
1(𝜏))𝑑𝜏                                                                      (4.35) 

𝑦𝑟(𝑡) = (1 + 𝕙)𝑦𝑟−1(𝑡) + 𝕙 ∫  −𝑣𝑟−1(𝜏) 𝑑𝜏
𝑡

0
  

𝑣𝑟(𝑡) = (1 + 𝕙)𝑣𝑟−1(𝑡) + 𝕙 ∫  −𝑧𝑟−1(𝜏) 𝑑𝜏
𝑡

0
  

𝑧𝑟(𝑡) = (1 + 𝕙)𝑧𝑟−1(𝑡) + 𝕙 ∫  𝐴𝑦𝑟−1(𝜏) + 𝐵 𝑦𝑟−1(𝜏)  𝑑𝜏
𝑡

0
                                              (4.36)      

𝑦1(𝑡) = −𝕙𝑡, 𝑣1(𝑡) = 0, 𝑧1(𝑡) = 𝕙𝑡 

𝑦2(𝑡) = −𝕙(1 + 𝕙)𝑡, 𝑣2(𝑡) = −
1

2
𝕙2𝑡2, 𝑧2(𝑡) = 𝕙(1 + 𝕙)𝑡 −

𝕙2𝑡3

3
, 

𝑦3(𝑡) = −𝕙(1 + 𝕙)
2
𝑡 +

𝕙3𝑡3

6
, 

𝑦(𝑡, 𝕙) ≅ 𝑌𝑅(𝑡, 𝕙) =  𝑦𝑖
𝑅
𝑖=0 (𝑡, 𝕙)                                                                              (4.37) 

Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 
Volume 06 – Issue 02, October 2018

Asian Online Journals (www.ajouronline.com) 26



 

Figure(9) shows the comparison between 𝑌7 of NMHAM and 𝑌7 of NHAM at 0 ≤ 𝑡 ≤ 2, with  the 

exact solution(4.15) which indicates that the series solution 𝑌7  obtained by MNHAMis more 

accurate from the series solution 𝑌7  obtained by NHAM.Figure (10) shows the comparison of 𝑌6  ,

𝑌5of NMHAM and 𝑌7 of NHAM with the exact solution (4.15) at 0 ≤ 𝑡 ≤ 1.5  which indicates 

that the speed of convergence of NMHAM is faster and more convergence in comparison of 

NHAM.Figures (11) shows that the series solution 𝑌7 obtained by NMHAM at 0 ≤ 𝑡 ≤ 1  is more 

accurate from the series solution𝑌7 obtained by NHAMFigures (12) shows that the series 

solution𝑌6  obtained by NMHAM is more and faster convergence from the series solution𝑌7  

obtained  by NHAM at 0 ≤ 𝑡 ≤ 1.  

 

 

 

Figure(10):Comparison of 𝑌6 and  𝑌5 of NMHAM and 𝑌7 of NHAM with the exact solution (4.15) at 

   0 ≤ 𝑡 ≤ 1.5  𝕙 = −1.   

Figure(8): 𝕙-curve for NMHAM approximation solutionsY7 of problem (4.13)-(4.14) at different values of  𝑡 . 

Figure(9): Comparison of the 7th order approximations of NMHAM and NHAM at 0 ≤ 𝑡 ≤ 1.5  , 𝕙 = −1with  the   

exact solution(4.15). 
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Table (3) show the comparison of 𝑌7 of NMHAM ,NHAM and nHAM ,with the exact solution 

(4.15) at different values of of 𝑡 .Table (4) shows the comparison of the absolute errors of 𝑌7 of 

NMHAM ,NHAM and nHAM at different values of of 𝑡. Tables (3) and (4) indicate that  the series 

solution obtained by NMHAM is more accurate from the series solution obtained  by NHAM and 

the series solution obtained by nHAM is divergent. 

 

 
nHAM NHAM NMHAM Exact t 

0 0 0 0 0 

−350.966 0.099839 0.099833 0.099833 0.1 

−701.933 0.198762 0.198669 0.198669 0.2 

−1052.902 0.295974 0.295520 0.295520 0.3 

−1403.874 0.390805 0.389418 0.389418 0.4 

−1754.851 0.482704 0.479426 0.479426 0.5 

−2105.831 0.571229 0.564646 0.564642 0.6 

−2456.816 0.656040 0.644230 0.644218 0.7 

−2807.808 0.736880 0.717397 0.717356 0.8 

−3158.805 0.813554 0.783442 0.783327 0.9 

−3509.807 0.885889 0.841760 0.841471 1 

 

 

 

Figure(11): The absolute errors of the 7th order approximations of  NMHAM and NHAM at 0 ≤ 𝑡 ≤ 1 , 𝕙 = −1. 

Figure(12):The absolute errors of the 6th order approximations of NMHAM and the 7th order approximations of 

NHAM at 0 ≤ 𝑡 ≤ 1, 𝕙 = −1 . 

Table3: Comparison of the 7th order approximations of NMHAM, NHAM and nHAM with  the exact solution (4.15). 
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A.E nHAM A.E NHAM A.E NMHAM t 

0 0 0 0 

351.066 6.012234 × 10−6 3.275435 × 10−13 0.1 

702.132 9.274402 × 10−5 1.671137 × 10−10 0.2 

1053.198 4.535345 × 10−4 6.386566 × 10−9 0.3 

1053.198 0.0013867 8.435251 × 10−8 0.4 

1755.329 0.003279 6.217155 × 10−7 0.5 

2106.396 0.006587 3.165286 × 10−6 0.6 

2457.461 0.011823 1.247286 × 10−5 0.7 

2808.526 0.019524 4.071103 × 10−5 0.8 

3159.588 0.030227 1.149799 × 10−4 0.9 

3510.648 0.044418 2.894769 × 10−4 1 

 

4.3    Example 3 Consider non-linear Klein-Gordon equation as follows [1] 

Subject the initial condition 

The exact solution when  𝑓(𝑥, 𝑡) = 2𝑥2 − 2𝑡2 + 𝑥4𝑡4 is 

4.3.1. NHAM solution: To solve (4.38-4.39) by means of the NHAM, expanding the 

homotopy 𝜇(𝑥, 𝑡; 𝕢) in powers of the parameter 𝕢 with 𝑠 = 2: 

 

 
Where 

such that  

Let we choose the initial approximation 

And the linear operator 

Table4: Comparison of the absolute errors of 7th order approximations of NMHAM , NHAM and nHAM with  the 

exact solution(4.15). 

𝑦𝑡𝑡 − 𝑦𝑥𝑥 + 𝑦2 = 𝑓(𝑥, 𝑡)                                                                                                         (4.38) 

𝑦(𝑥, 0) = 0   ,    𝑦𝑡(𝑥, 0) = 0                                                                                                    (4.39)     

𝑦(𝑥, 𝑡) = 𝑥2𝑡2                                                                                                                          (4.40)    

𝜇(𝑥, 𝑡; 𝕢) =  𝑓𝑟
2∞

𝑟=0 (𝑥, 𝑡)𝕢𝑟 = 𝑓0
2(𝑥, 𝑡)𝕢0 + 𝑓1

2(𝑥, 𝑡)𝕢1 + ⋯ + 𝑓𝑛
2(𝑥, 𝑡)𝕢𝑛 + ⋯,  (4.41) 

𝑓𝑟
2(𝑥, 𝑡) =

1

2𝑟!
[

𝑑2𝑟

𝑑𝑡2𝑟
𝑓(𝑥, 𝑡)]𝑡=0 𝑡

2𝑟 +
1

(2𝑟+1)!
[

𝑑(2𝑟+1)

𝑑𝑡 (2𝑟+1)
𝑓(𝑥, 𝑡)]𝑡=0 𝑡

(2𝑟+1)                                (4.42) 

𝑓0
2(𝑥, 𝑡) = 2𝑥2    , 𝑓1

2(𝑥, 𝑡) = −2𝑡2     , 𝑓2
2(𝑥, 𝑡) = 𝑡4𝑥4     , 𝑓3

2(𝑥, 𝑡) = 0 , ….                     (4.43) 

𝑦0(𝑥, 𝑡) = 0,                                                                                                                            (4.44) 
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with the property𝐿[𝑐] = 0,                                                                                                       (4.46) 

where𝑐 is a constant of integration. 

The problem (4.38-4.39) under NHAM suggests to define a nonlinear operator as 

According to (2.4), the zero order deformation equation with the initial approximation (4.44) and 

linear operator (4.45) with (4.46) will be: 

and the 𝑟th order deformation equation as follows: 

with the initial conditions 𝑦𝑟(𝑥, 0) = 0 and 𝑦𝑟𝑡
(𝑥, 0) = 0 

Where 

Now, the solution of (4.49)for 𝑟 ≥ 1 becomes 

We now successively obtain 

 

⋮ 

Then, the series solution of the NHAM is: 

Equation (4.52) is a family of approximation solutions to the problem (4.38)-(4.39) in terms of the 

convergence parameters 𝕙. 

4.3.2. NMHAM solution: in order to solve (4.38) )-(4.39)by the proposed approach (NMHAM) 

we construct the following system: 

with the following initial conditions  

𝐿[𝛿(𝑥, 𝑡; 𝕢)] =
𝜕2𝛿(𝑥 ,𝑡;𝕢)

𝜕𝑡2
                                                                                                          (4.45) 

ℕ[𝛿(𝑥, 𝑡; 𝕢)] =
𝜕2𝛿(𝑥 ,𝑡;𝕢)

𝜕𝑡2
−

𝜕2𝛿(𝑥 ,𝑡;𝕢)

𝜕𝑥2
+ 𝛿2(𝑥, 𝑡; 𝕢) − 𝜇(𝑥, 𝑡; 𝕢),                                             (4.47) 

(1 − 𝕢)L[𝛿(𝑥, 𝑡; 𝕢) − 𝑦0(𝑥, 𝑡) ] = 𝕢𝕙ℕ[δ(𝑥, 𝑡; 𝕢) − 𝜇(𝑥, 𝑡; 𝕢)],                                          (4.48) 

𝐿[𝑦𝑟(𝑥, 𝑡) − 𝑋𝑟𝑦𝑟−1(𝑥, 𝑡)] = 𝕙ℛ𝑟(𝑦𝑟−1         (𝑥, 𝑡)),                                                                      (4.49) 

ℛ𝑟 𝑦𝑟−1         (𝑥, 𝑡) = 𝑦tt r−1
(𝑥, 𝑡) − 𝑦𝑥𝑥 𝑟−1

(𝑥, 𝑡) +  𝑦𝑖𝑦𝑟−1−𝑖
𝑟−1
𝑖=0 − 𝑓2

𝑟−1
(𝑥, 𝑡)                      (4.50) 

𝑦𝑟(𝑥, 𝑡) = 𝑋𝑟𝑦𝑟−1(𝑥, 𝑡) + 𝕙𝐿−1ℛ𝑟 𝑦𝑟−1         (𝑥, 𝑡)                                                                       (4.51) 

𝑦1(𝑥, 𝑡) = −𝕙𝑡2𝑥2  

𝑦2(𝑥, 𝑡) = −𝕙𝑡2𝑥2 +
1

6
𝕙((1 + 𝕙)𝑡4 − 6𝕙𝑡2𝑥2  

𝑦(𝑥, 𝑡, 𝕙) ≅ 𝑌𝑅(𝑥, 𝑡, 𝕙) =  𝑦𝑖
𝑅
𝑖=0 (𝑥, 𝑡, 𝕙)                                                                              (4.52) 

𝑦𝑡(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) ,  

𝑣𝑡(𝑥, 𝑡) = 𝑦𝑥𝑥 − 𝑦2 + 𝜇(𝑥, 𝑡; 𝕢)                                                                                              (4.53) 
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Expanding the homotopy 𝜇(𝑥, 𝑡; 𝕢) in powers of the parameter 𝕢 with 𝑠 = 1: 

Where  

and the following linear operators: 

we  obtain 

                           

Now, for  𝑟 ≥  2, we get  

And the following results are obtained: 

 

⋮ 

Then, the series solution of the NMHAM is: 

𝑦0(𝑥, 𝑡) = 0 , 𝑣0(𝑥, 𝑡) = 0                                                                                                       (4.54) 

𝜇(𝑥, 𝑡; 𝕢) =  𝑓𝑟
1∞

𝑟=0 (𝑥, 𝑡)𝕢𝑟 = 𝑓0
1(𝑥, 𝑡)𝕢0 + 𝑓1

1(𝑥, 𝑡)𝕢1 + ⋯ + 𝑓𝑛
1(𝑥, 𝑡)𝕢𝑛 + ⋯,           (4.55) 

𝑓𝑟
1(𝑥, 𝑡) =

1

𝑟!
[

𝑑𝑟

𝑑𝑡𝑟
𝑓(𝑥, 𝑡)]𝑡=0 𝑡

𝑟                                                                                                (4.56) 

such that   

𝑓0
1(𝑥, 𝑡) =

5

4
    , 𝑓1

1(𝑥, 𝑡) = 0     , 𝑓2
1(𝑥, 𝑡) =

𝑡2

16
     , 𝑓3

1(𝑥, 𝑡) = 0 , ….  

𝐿𝑦(𝑥, 𝑡) =
𝜕𝑦 (𝑥 ,𝑡)

𝜕𝑡
  , 𝐿𝑣(𝑥, 𝑡) =

𝜕𝑣(𝑥 ,𝑡)

𝜕𝑡
                                                                                      (4.57)  

𝐴𝑦𝑟−1(𝑡) = −𝑦𝑥𝑥 𝑟−1
(𝑥, 𝑡) − 𝑓1

𝑟−1
(𝑥, 𝑡)  

𝐵𝑦𝑟−1(𝑥, 𝑡) =  𝑦𝑖𝑦𝑟−1−𝑖
𝑟−1
𝑖=0                                                                                                    (4.58) 

𝑦1(𝑥, 𝑡) = 𝕙 ∫  −𝑣0(𝑥, 𝜏) 𝑑𝜏
𝑡

0
  

𝑣1(𝑥, 𝑡) = 𝕙 ∫ (−𝑦0𝑥𝑥
(𝑥, 𝜏)

𝑡

0
+ 𝑦0

2(𝑥, 𝜏) − 𝑓0
1(𝑥, 𝜏))𝑑𝜏                                                        (4.59)      

𝑦𝑟(𝑥, 𝑡) = (1 + 𝕙)𝑦𝑟−1(𝑥, 𝑡) + 𝕙 ∫ (−𝑣𝑟−1(𝑥, 𝜏))
𝑡

0
𝑑𝜏 ,  

𝑣𝑟(𝑥, 𝑡) = (1 + 𝕙)𝑣𝑟−1(𝑥, 𝑡) + 𝕙∫ (𝐴𝑦𝑟−1(𝑥, 𝜏)
𝑡

0
+ 𝐵𝑦𝑟−1(𝑥, 𝜏)) 𝑑𝜏                                   (4.60) 

𝑦1(𝑥, 𝑡) = 0,   𝑣1(𝑥, 𝑡) = −2𝕙𝑡𝑥2 

𝑦2(𝑥, 𝑡) = 𝕙2𝑡2𝑥2,   𝑣2(𝑥, 𝑡) = −2𝕙(1 + 𝕙)𝑡𝑥2 

𝑦3(𝑥, 𝑡) = 𝕙2(1 + 𝕙)𝑡2𝑥2 + 𝕙(𝕙𝑡2𝑥2 + 𝕙2𝑡2𝑥2)  
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Equation (4.61) is an approximation solutions for the problem (4.38)- (4.39) depending on the 

parameter 𝕙.To determine the valid region of 𝕙 , the 𝕙-curves given by the 5th-order NMHAM at 

different values of 𝑥 and 𝑡 are drawn in figure (13). 

 

Figures (14) show that the series solution 𝑌5 obtained by NMHAM at 0 ≤ 𝑡 ≤ 1.5, 𝑥 = 0.2  is 

more accurate from the series solution 𝑌5obtained by NHAM.Figures (15) show that the series 

solution 𝑌5  obtained by NMHAM is more accurate from the series solution 𝑌5obtained  by NHAM 

at larger 𝑡(1.5 ≤ 𝑡 ≤ 3,𝑥 = 0.2).  

 

 

Figure(15):The absolute errors of 𝑌5of NMHAM and NHAM at 1.5 ≤ 𝑡 ≤ 3 , 𝑥 = 0.2 ,𝕙 = −0.99 . 

𝑦(𝑥, 𝑡, 𝕙) ≅ 𝑌𝑅(𝑥, 𝑡, 𝕙) =  𝑦𝑖
𝑅
𝑖=0 (𝑥, 𝑡, 𝕙)                                                                              (4.61) 

Figure (13): 𝕙-curve for NMHAM approximation solutionsY5 of problem (4.38)-(4.39) at different values of  𝑥 and 𝑡. 

Figure(14):The absolute errors of 𝑌5of NMHAM and NHAM at 0 ≤ 𝑡 ≤ 1.5 , 𝑥 = 0.2 , 𝕙 = −0.99 . 
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Table (5) show the comparison of𝑌5 of NMHAM ,NHAM and nHAM ,with the exact solution 

(4.40).Table (6) shows the comparison between the absolute errors of𝑌5 of NMHAM ,NHAM and 

nHAM. Tables (5) and (6) indicate that  the series solution obtained by NMHAM is more accurate 

from the series solution obtained  by NHAM and nHAM. 
 

 
x t exact NMHAM NHAM nHAM 

0.2 0 0 0 0 0 

0.5 0.01 0.009999 0.010000 0.010002 

1 0.04 0.039999 0.040000 0.040339 

1.5 0.09 0.089999 0.090000 0.097930 

2 0.16 0.159999 0.160000 0.236556 

2.5 0.25 0.249999 0.250004 0.698986 

0.6 0 0 0 0 0 

0.5 0.09 0.089999 0.090000 0.090078 

1 0.36 0.359999 0.360000 0.366891 

1.5 0.809999 0.809999 0.8100000 0.925110 

2 1.44 1.439999 1.440000 2.374766 

2.5 2.25 2.249999 2.250004 7.228376 

1 0 0 0 0 0 

0.5 0.25 0.249999 0.249999 0.250549 

1 1 0.999999 0.999999 1.040476 

1.5 2.25 2.249999 2.249999 2.812751 

2 4 3.999999 3.999998 7.961905 

2.5 6.25 6.249999 6.249990 25.287156 
 

 
x t A.E NMHAM A.E NHAM A.E nHAM 

0.2 0 0 0 0 

0.5 7.291737 × 10−14 4.391019 × 10−13 1.949405 × 10−6 

1 1.166678 × 10−12 4.496417 × 10−10 3.390476 × 10−4 

1.5 5.906234 × 10−12 2.592851 × 10−8 0.007930 

2 1.866693 × 10−11 4.604308 × 10−7 0.076556 

2.5 4.557352 × 10−11 4.288093 × 10−6 0.448986 

0.6 0 0 0 0 

0.5 7.294165 × 10−14 3.717859 × 10−13 7.754464 × 10−5 

1 1.166733 × 10−12 3.806401 × 10−10 0.006891 

1.5 5.906164 × 10−12 2.194879 × 10−8 0.115110 

2 1.866729 × 10−11 3.897552 × 10−7 0.934766 

2.5 4.557421 × 10−11 3.629856 × 10−6 4.978376 

1 0 0 0 0 

0.5 7.291389 × 10−14 1.007444 × 10−12 5.487351 × 10−4 

1 1.166622 × 10−12 1.031669 × 10−9 0.040476 

Table5: Comparison of the 5th order approximations of NMHAM , NHAM and nHAM at different values of  𝑡and 

𝑥with  the exact solution(4.40). 

Table 6:Comparison of the absolute errors of 5th order approximations of NMHAM , NHAM and nHAM with  the 

exact solution (4.40). 
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1.5 5.907275 × 10−12 5.949359 × 10−8 0.562751 

2 1.866685 × 10−11 1.056486 × 10−6 3.961905 

2.5 4.557509 × 10−11 9.839353 × 10−6 19.037156 

 

5. Conclusion 

In this article, new powerful modification of homotopy analysis method (NMHAM) was proposed 

to create an approximate solution of nonhomogeneous nonlinear ordinary and partial differential 

equations. The main advantage of the NMHAM is that it requires less computational work 

compared with the NHAM and nHAM in finding approximate solutions for nonlinear 

nonhomogeneous differential equations. Illustrative examples show that the series solution 

obtained by NMHAM is more accurate from the series solution obtained byNHAM  andnHAM. 

Therefore, depending on the results of this work, we can say that the NMHAM is more effective 

than NHAM and nHAM. 
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