
Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 516X) 

Volume 01– Issue 04, December 2013 

Asian Online Journals (www.ajouronline.com)  86 

 

Development of a Tw-norm based Novel Fuzzy Regression 

Model  
 

B. Pushpa1, S. Muruganandam2  
  

 1 Research Scholar, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu,  627102, India. 

Department of Mathematics, Panimalar Institute of Technology, Chennai, 600123, India. 

  

 
2 Prof. & Head, Department of Mathematics, TRP Engineering College, Trichy, Tamilnadu, 621105, India 

 

 

_________________________________________________________________________________ 

ABSTRACT— The weakest t-norm (Tw-norm) based novel fuzzy regression model is developed using the concept of 

symmetric difference.  The proposed model will be useful in a realistic environment and improve upon the traditional 

fuzzy regression. The traditional system usually adopts alpha cut operations for its calculations.  Here the Tw- norm 

based operations are used, to reduce the width of the estimated responses which will give exact prediction.  Fuzzy 

linear regression analysis can be seen as an optimization problem where the aim is to derive a model which fits the 

given dataset.  The proposed fuzzy regression analysis uses the extended objective function which is insensitive to the 

outlier data and the performance of the method is illustrated with different examples. 

 

Keywords— Weakest t-norm, Fuzzy regression, Symmetric difference 

_________________________________________________________________________________ 

 

1. INTRODUCTION 

Regression analysis, including statistical regression analysis and fuzzy regression analysis, aims to determine the 

best-fit model for describing the functional relationship between dependent variables and independent variables by 

exploiting the knowledge from the given input-output data pairs. Some discrepancy between the observed values (from 

the data sets) and the estimated values (from a regression model) can occur due to measurement errors and/or modeling 

errors. With the modeling errors ignored, the deviations are supposed to be random in classical regression analysis. For 

the fuzzy regression analysis, the deviations are attributed to the imprecision of the observed values and/or the 

indefiniteness of model structure. In this case, the observed values can differ from the estimated values to a certain 

degree of belief. Fuzzy regression has been found to be more appealing than statistical regression in estimating the 

relationship between the dependent variable and independent variables when a high degree of fuzziness is involved and 

only a few data sets are available. 

  

Tanaka et al. [1] proposed the formulation of possibilistic linear regression analysis and determined the fuzzy 

parameters by applying linear programming models. However, it is known that this method has several drawbacks 

[2,3,4,5,7].  It is very sensitive to outliers and when linear programming is used in possibilistic regression, some 

coefficients tend to become crisp due to the characteristics of linear programming. To tackle this problem, Nasrabedi et 

al.[2] proposed a mathematical-programming approach to fuzzy linear regression analysis. Another problem observed is 

that when the coefficients are fuzzy numbers the spread of the estimated response becomes wider as the magnitudes of 

the explanatory variables increase, even though the spreads of the observed responses decrease, or as more observations 

are included in the model. This contradicts intuition. To prevent this problem, Diamond [3], Wu and Tseng [4] and Kao 

and Chyu [6] considered numeric coefficients to describe the fuzzy relationship between the fuzzy response variable and 

fuzzy (or numeric) explanatory variables. All of them used the concept of least squares to determine the regression 

coefficients. Kao and Chyu[6] considered a two-stage solution procedure to determine the numeric coefficients using the 

criterion of Kim and Bishu et al.[7] which is a modification of the fuzzy linear regression analysis criterion proposed by 

Tanaka et al. [1]. Although this criterion has been used by several authors, it has the drawback that if the observed and 

estimated fuzzy responses do not intersect with each other, the error estimation remains constant. 

Regression analysis based on the method of least -absolute deviation has been used as a robust method.  When 

outlier exists in the response variable, the least absolute deviation is more robust than the least square deviations 

estimators.  Some recent works on this topic are as follows: Lee and Chang [8] studied the fuzzy least absolute deviation 

regression based on the ranking method for fuzzy numbers. Kim and Bishu et al. [7] proposed a two stage method to 

construct the fuzzy linear regression models, using a least absolutes deviations method. Torabi and Behboodian et al.[9] 

investigated the usage of ordinary least absolute deviation method to estimate the fuzzy coefficients in a linear regression 

model with fuzzy input – fuzzy output observations.  Considering a certain fuzzy regression model, Chen and Hsueh  et 
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al.[10] developed a mathematical programming method to determine the crisp coefficients as well as an adjusted term for 

a fuzzy regression model, based on L1 norm (absolute norm) criteria. Choi and Buckley et al.[11] suggested two methods 

to obtain the least absolute deviation estimators for common fuzzy linear regression models using TM based arithmetic 

operations.  Taheri and Kelkinnama et al.[12] introduced some least absolute regression models, based on crisp input- 

fuzzy output and fuzzy input-fuzzy output data respectively. 

 

In a regression model, multiplication of fuzzy numbers are done by arithmetic operations such as  -levels of 

multiplication of fuzzy numbers and the approximate formula for multiplication of fuzzy numbers. The  -cut arithmetic 

provides results such that the fuzziness of the model calculation was fuzzier than that of the Tw-fuzzy arithmetic due to 

the accumulation of fuzziness of the  -cut arithmetic and the  -cut arithmetic cannot effectively preserve the original 

shape of a membership function.    Apart from these two, we know that using the weakest T – norm (Tw), the shape of 

fuzzy numbers in multiplication will be preserved. The Tw arithmetic gives a justifiable fuzziness/ fuzzy spread because it 

takes only the maximal fuzziness encountered and calculates that into the operation.   In this regard, Hong, Lee and Do et 

al. [13] presented a method to evaluate fuzzy linear regression models based on a possibilistic approach, using Tw - norm 

based arithmetic operations.  The objective of this study is to develop a fuzzy regression model to handle the functional 

dependence of crisp/ fuzzy inputs-fuzzy output variables using the symmetric difference between fuzzy numbers. 

In this paper, section 2 focuses on some important preliminary definitions and basics on fuzzy arithmetic operations 

based on the weakest T-norm.  In section 3, the new approach based on symmetric difference is presented using the shape 

preserving operations on fuzzy numbers and it is analyzed with crisp/ fuzzy input and fuzzy output with symmetric/ non-

symmetric triangular fuzzy numbers and Trapezoidal fuzzy numbers. The goodness of fit of the proposed model is also 

discussed.  In section 4, by using numerical examples some comparative studies are presented to show the performance 

of the proposed method. 

2. THE WEAKEST T-NORM BASED ARITHMETIC OPERATIONS 

Since our study concerns fuzzy arithmetic based on the weakest norm, this section will briefly introduce Tw 

arithmetic operation.  The basic concepts and definition of the weakest t-norm arithmetic operations will be introduced in 

the following: 

In fuzzy arithmetic approaches, Zadeh’s sup-min operator [14] can be defined as 

 
x y z

A B (z) sup min A(x),B(y)


 
 

  where denotes any fuzzy arithmetic operation which is performed in the 

equivalent manner by using  -cut of fuzzy numbers and interval arithmetic. The resulting fuzzy arithmetic may be 

called the  -cut (fuzzy) arithmetic. In  -cut arithmetic, addition/ subtraction, multiplication/division and others may be 

performed at each     on the intervals of confidence by interval arithmetic.   

Definition 2.1: A triangular norm (t-norm) T is an increasing associative and commutative 2[0,1] [0,1] mapping that 

satisfies the boundary condition for every x [0,1] , T(x,1) x . 

Some well known   continuous T- norms are the minimum operator TM, the algebraic product Tp, and Lukasiewicz t-norm 

TL defined by LT (x, y) max(x y 1,0)   .  The minimum operator TM is the strongest (greatest) t-norm.  The Weakest t-

norm Tw is defined by w

min(x, y),if max(x, y) 1
T (x, y)

0 , elsewhere


 


 

Corollary (Dubois [15]):  Consider an L-R fuzzy interval  , , , , 1,2,...,i i i i i LR
A l r i n    , then the Tw- sum  

1

,
n

i
Tw
i

A A



   

is given by, 
1 1

1 11

, ,max ,max

n nn n n

i i i i i
Tw i i

i ii

A A l r
 

 

 
     
 
 
  .  Notice that for the addition based on the minimum operator, the 

resulting spreads are the sum of the incoming spreads, while for the addition based on weakest t-norm, resulting spreads 

are the greatest of the incoming spreads. 

Moreover, each t-norm may be shown to satisfy the following inequalities, 

( , ) ( , ) ( , ) min( , )w MT a b T x y T a b a b   where

, 1

( , ) , 1

0 ,

w

a if b

T a b b if a

otherwise




 



 

Tw is the weakest t-norm.  The importance of t-norms, e.g., min( , ), , max(0, 1) ( , )wa b a b a b and T a b    are shown 

in [15,16]. Two characteristics can be observed in the previous research.  First, the addition/ subtraction of fuzzy 

numbers by TM and Tw preserve the original shape of the fuzzy numbers.  With the TM in the multiplication/division, the 

shapes of the original FNs may not be preserved.  However, for given shapes, in multiplication, the Tw preserves the 
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original FN’s shape.  Second, the weakest t-norm operations can elicit more exacting performance, meaning smaller 

fuzzy spreads within uncertain environments [16].  This exact performance may successfully reduce accumulating 

phenomena of fuzziness in complex systems.  The addition, subtraction and multiplication of Tw fuzzy arithmetic can be 

seen in the following: Let   ( , , ) , ( , , )A A LR B B LRA a B b      be two L-R fuzzy numbers.   The fuzzy operations of Tw 

can be shown as follows:  

 (1) Addition: 

( ,max( , ),max( , ))W A B A B LRA B a b        

(2) Subtraction: 

( ) ( ,max( , ),max( , ))W A B A B LRA B a b        

(3) Multiplication: 

 

 

( ,max( , ),max( , )) , 0

( ,max( , ),max( , )) , , 0

( ,max( , ),max( , )) , 0, 0

0, , , 0, 0

0, , , 0, 0

(0,0,0) , 0, 0

A B A B LR

A B A B RL

A B A B LL

W
A A LR

A A RL

LR

ab b a b a for a b

ab b a b a for a b

ab b a b a for a b
A B

b b for a b

b b for a b

for a b






 
 

 

   

 

   

   

   

 

 











 

If  1 1 1 1 1, , ,
LR

A l r    and  2 2 2 2 2, , ,
LR

A l r    be two trapezoidal fuzzy numbers, then the Tw based arithmetic 

operations between 1 2A and A  are defined as follows: 

(i)  1 2 1 2 1 2 1 2 1, 2, ,max( , ),max( )wA A l l r r         

(ii)  1 2 1 2 1 2 1 2 1, 2( ) , ,max( , ),max( )wA A l r r l         

(iii)

 

 

1 2 1 2 1 2 2 1 1 2 2 1 1 2

1 2 1 2 1 2 2 1 1 2 2 1 1 2

1 2 1 2 2 1 1 2 2 1 1 2

1 2 1 2 1 2

1

( , ,max( , ),max( , )) , , 0

( , ,max( , ),max( , )) , , 0

( ,max( , ),max( , )) , 0, 0

0, , , 0, 0

0,

LR

LR

RR

W
LR

l l r r l l r r for l l

l l r r r r l l for l l

l l l r r l for l l
A B

l r for l l

n





   
 

 



   

   

   

 

 2 1 2 1 2

1 2

, , 0, 0

(0,0,0) , 0, 0

RL

LR

m for l l

for l l








   

  



 

For example, Let ( , , ) (4,2,2), ( , , ) (8,3,3)A A B BA a B b        , then the triangular fuzzy numbers are 

(2,4,6), (5,8,11)A B  .  The Table 1 shows the results of the  -cut and Tw operations.  In order to observe 

accumulating phenomena of fuzziness, the fuzzy spread is given in Table 1, the fuzzy spread is the distance of the left to 

right bounds.  In the numerical example, this study has found that using multiplication operation of Tw produces higher 

reduction rates which is 42.85 %, and the Tw operations shows the average reduction rate of 40.95%. This is an evidence 

that Tw based arithmetic operations can provide a more conservative evaluation for a decision maker in uncertain 

environments, and comparatively,  -cut arithmetic operations produce more optimistic evaluations.   

Table 1: The results of  -cut and Tw operations 

Operations 
 -cut 

(when =1) 
(1)Fuzzy spread 

( -cut)  Tw 
(2) fuzzy 

spread(Tw) 

Reduction rate 
(%) 

((1) (2))
100

(1)


   

+ (7,12,17) 10 (9,12,15) 6 40 
_- (-9,-4,1) 10 (-7,-4,-1) 6 40 
  (10,32,66) 56 (16,32,48) 32 42.85 

Avg. of 
reduction 

cost 
    40.95 

 

From the above calculation it is observed that the spread of the fuzzy set is increasing during calculation in the 

traditional arithmetic operation.  But in the Tw based operation, the spread is controlled.  From the above discussion it is 

concluded that Tw based multiplication can also preserve the shape of LR type fuzzy numbers. 
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3. FUZZY LINEAR REGRESSION USING THE PROPOSED APPROACH 

Consider the set of observed data  ( , ), 1,...,i iX Y i n where iX  is the explanatory variable which may be with crisp/ 

fuzzy numbers and iY is the response variable which is either with symmetric/non-symmetric  triangular or trapezoidal 

fuzzy numbers. Our aim is to fit a fuzzy regression model with fuzzy coefficients to the aforementioned data set as 

follows: 0 1 1i w w i w w p w ip w i

ˆ
Y A ( A X ) ..... ( A X ) A X        , 1,.... ,i n

 
where  , , 1,...j j jA a j p    are 

symmetric fuzzy numbers and the arithmetic operations are based on the weakest Tw norm. In FLR model, we are 

interested in finding a fuzzy function i

ˆ
Y in  the above given equation which fits a finite number of crisp input-fuzzy 

output data The parameters are optimized in such a way that the difference between the observed outputs iY and the 

estimated ones i

ˆ
Y are made as small as possible.  

The most important part in an optimization problem is the selection of the objective function.  The sought model 

could be varied based on the chosen objective function.  Fuzzy linear regression analysis can be seen as an optimization 

problem where the aim is to derive a model which fits the given dataset.  Another challenge in fuzzy regression analysis 

is to obtain a model which is insensitive of the outlier.  Although the portion of the outlier is usually small compared to 

the rest of the data set, a model which fits all the data including the outliers will have an unpredictable behaviour.  One of 

the challenges in fuzzy linear regression is that the fitness measure can be a trade secret which cannot be transparent to 

the fuzzy linear regression analyst. Another difficulty with the existing fuzzy linear regression analysis is that the 

mathematician is limited in selecting the fitness measure. For example, in least square approach the fitness measure needs 

to be differentiable and thus it must be continuous. The application of meta-heuristic approach relaxes these restrictions 

as this approach does not dictate any condition for the selection of the objective function. Therefore, the objective 

function is designed in such a way that it can tackle the issue of dealing with outliers.  

 In this section, we are discussing the objective function based on the symmetric difference along with similarity 

measure between two fuzzy sets, the observed and estimated values of the outputs using Tw norm, with crisp/fuzzy input- 

fuzzy output data, in which the coefficients of the models are also considered as fuzzy numbers.  

The Least absolute deviation based on the symmetric difference between the observed and the estimated response 

variable is defined as follows. 

i i i iL L U U
LAD Y Y Y Y     where iY  is the observed response variable and iY is the estimated response variable.  

Using the Tw – norm based operations, the above distance can be defined 

as        
1 11 1

max , max ,

n n
T T

i j ij ij j i i i j ij ij j i i
j p j p

LAD a x a x y e a x a x y e
   

   
              
   
   

  . To show 

the fitness (performance) of the fuzzy linear regression model, we compare the fuzzy estimated response of the model 

iY with the observed one iY  where ‘i’ is the index of the data.  There are different measures to determine the similarity 

between two fuzzy numbers. Here we have used the similarity measure based graded mean integration representation 

[10] which gives more accurate results.  The similarity measure is just for comparison purposes, and any other type of 

objective function can be designed and then applied.  
1

( , )
1 ( )

i i T
i i

S Y Y
ABS a x y


 

. The similarity measure varies 

between 0 and 1, so the closer the value to 1, the better the model.  However, for the sake of conformity, the 

dissimilarity measure [1- ( , )i iS Y Y ] is considered in the objective function and the value is closer to 0, the better the 

model. 

The extended objective function which combines the LAD using symmetric difference and ( , )i iS Y Y  to decrease the 

possibility of being trapped into local minima is given in the following form: 

       
1 11 1 1 1

1
min max , max , 1

1 ( )

m n n m
T T

i j ij ij j i i i j ij ij j i i T
j p j p i ii i

a x a x y e a x a x y e
abs a x y    

      
                  
              

   

The optimization problem to find the parameters of the model                
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       
1 11 1 1 1

1
min max , max , 1

1 ( )

m n n m
T T

i j ij ij j i i i j ij ij j i i T
j p j pi i i i

a x a x y e a x a x y e
abs a x y    

      
                  
             

   

 
subject to  

 

 

 

 

1 1

10 1

1 1

10 1

1

( ) max , ( )

( ) max , ( )

max , 0, 1,2,...

n n

j ij j ij ij j i i
j pj

n n

j ij j ij ij j i i
j pj

j ij ij j
j p

a x L h a x y L h e

a x L h a x y L h e

a x i m

 

 

 

 

 

    

    

    

 

 

 where the variables are ijx : value of the jth independent variable for the ith observation,     : value of the  dependent 

variable for the ith observation, and the parameters are:     : spread of the dependent variable for the ith observation,          

h : target degree of belief,  ja : midpoint of the jth regression coefficient,  j  : spread of the jth  regression coefficient, 

n : number of independent variables, m : number of observations. Solving this optimization problem using LINGO13.0, 

we can estimate the fuzzy coefficients of the model.  

4. PERFORMANCE OF THE PROPOSED MODEL 

 To verify the performance of the proposed fuzzy linear regression method, we apply the method on crisp input - 

fuzzy output and fuzzy input - fuzzy output data sets from the literature and the results are compared with similarity 

measure [10], Goodness of fit defined by Xu and Li et al.[18] and the Mean absolute percentage error (MAPE) are used 

to check the performance of the proposed method. 

4.1 Similarity measure based on Graded mean integration representation : 

 Let 1 2 3( , , )TC a a a  be a triangular fuzzy number, then the graded mean integration representation of C  is 

1 2 34
( )

6

a a a
P C

 
 . Based on the idea of graded mean integration representation distance, Chen et al.[10] proposed a 

similarity measure 
1

( , ) ( , ) ( ) ( )
1 ( , )

S A B where d A B P A P B
d A B

  


 where ( )P A and ( )P B are the graded mean 

integration representations of A and B  respectively. 

 4.2. Goodness of fit [18]: 

 Let A and B  be fuzzy numbers and [ ( ) ( )], [ ( ) ( )]
x R x R

A B A x B x A B A x B x
 

      , then 

( , ) ( ) ( )cA B A B A B   is called goodness of fit of A and B . Let A and B  be fuzzy numbers, then  

(1) 0 ( , ) 1A B  ;  (2) ( , )A B =1; (3) ( , ) ( , )A B B A ; (4) ( , ) ( , ) ( , )A B C A C A B B C      

The above conditions indicate that ( , )A B  is a measure of A close up to B , and ( , )A B =1 when A B  

If ( , )A a  and ( , )B b  be two normal fuzzy numbers, then 
2

( , ) exp
a b

A B
  
      

 
  is the goodness of fit of 

observed and estimated fuzzy numbers A  and B . The goodness of fit of observed value iy  and the estimated value 

0 1 1 ...i i n inY A A x A x     is given by 

2

0 1 1

0 1 1

....
( , ) exp

( ....

i in i
i i

i in i

a a x a y
y Y

x x s

     
   
       

 

 4.3. Mean absolute percentage error (MAPE): 

MAPE -it is the most popular relative error estimator method.  It is estimated as follows: 

 where observed value is iy  and the estimated value is iY . 

(i) When Crisp input and fuzzy output data is given 

As an illustration, a part of data given in Singh et al.[19] concerned with yield of pearl Millet Crop at block levels of 

Bhiwani district is considered here to develop a fuzzy estimate of Pearl Millet yield.  From the Table 2, it is very clear 

1

1

n
y Yi iMAPE

n yii







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that the proposed method gives effective result in case of Crisp input and fuzzy output practical data and it is with the 

similarity measure of 96% with the observed response variable. The Estimated fuzzy regression model is 

W WY (8.232,6.741) (0.2447,0) X     with the confidence level of h =0.695. Table 2 shows that the proposed 

method has 46% of the similarity measure.  Fig. 1 illustrates the behavior of the estimated fuzzy linear model for the data 

set given in Table 2. The estimated regression model of Singh et al. [19] method is Y (6.04,7.53) (0.41,0) X   .    

The dotted lines show the estimated fuzzy output, the vertical lines show the observed outputs and the continuous lines 

show the result of estimated output given by [19].  The data set using the proposed approach has a high goodness of fit 

value and mean similarity measure of 46% with the observed output in comparison with [19].    

 

Table 2:  Pearl Millet yield as triangular fuzzy numbers with farmer’s estimates for Bhiwani District [19]. 

 

  Observed -Y Proposed method Comparison with [19] 

Blocks 

Farmer's 

estimated 

x 

Lower 

limit 

of 

yield 

Upper 

limit 

of 

yield 

Similarity 

measure 

Goodness 

of fit 
MAPE 

similarity 

measure 

Goodness 

of fit 
MAPE 

1 13.36 10 15 0.50025 0.988381 0.0799 0.50443 0.99046 0.0785 

2 19.69 12.5 20 0.238095 0.911158 0.1969 0.31876 0.964745 0.1315 

3 10.01 6 12.42 0.404531 0.978356 0.1598 0.51703 0.992466 0.1014 

4 10.66 5 10.8 0.253743 0.911142 0.3722 0.28485 0.943688 0.3178 

5 9.98 6.25 12.01 0.393082 0.974574 0.1691 0.49955 0.990778 0.1097 

6 11.93 9.09 14.51 0.40833 0.972335 0.1150 0.37471 0.977405 0.1324 

7 11.96 7.33 15.01 0.98912 0.999999 0.0009 0.81539 0.999605 0.0202 

8 10.08 8.75 13.75 0.644745 0.996451 0.0489 0.48141 0.988536 0.0957 

9 9.75 11.43 15.01 0.277624 0.911168 0.1968 0.23909 0.889972 0.2406 

   Avg 0.456613 0.960396 0.1488 0.44836 0.970851 0.1364 

 
 

Fig. 1: Fuzzy linear regression model using the proposed method and Singh et al.[19] method for the data set in Table 2. 

(ii) When Fuzzy input and fuzzy output data(both are non symmetric triangular fuzzy numbers) 

Consider an example studied by Diamond [3].  In this example there are 8 pairs of ( , )i iX Y observations, as shown in 

Table 3, where both the response and explanatory variables are non-symmetric triangular fuzzy numbers in the form 

( , , )y   where’ y’  is the center,   ,   are the left and right spread respectively.  Using the proposed approach for the 

data given in Table 3, the estimated fuzzy regression model is w wY (1.733,0,0.7422) (0.0995,0,0) X    with 

the confidence level of h = 0.45. Fig. 2 illustrates the behavior of the proposed approach for the non-symmetric fuzzy 

input and fuzzy output data set in which the dotted rectangle and solid rectangle show the estimated dependent variable 

and observed dependent variable values respectively.  Fig. 3 illustrates the S. P.  Chen et al. [20] fuzzy regression 

model.  From the Fig. 3, it is clear that the spreads of estimated response is wider than the model by the proposed 

method.   Among the general fuzzy models, the proposed model in which Tw- norm based arithmetic operations are used 

has a larger mean of similarity measure than the method proposed by S.P. Chen et al.  
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The least absolute regression model has more predictive ability than the least square regression model of S.P. Chen 

et al.  The data set using the proposed approach has a high goodness of fit value and similarity measure of 82% with the 

observed output in comparison with [20].    

Table 3: Non- symmetric triangular fuzzy number dataset taken from [20] using the proposed approach  

  X Observed -Y Proposed method 
Comparison with 

[20] 

Lower upper center lower center upper 
Similarity 
measure 

Goodness 
of Fit 

Similarity 
measure 

Goodness 

16.8 23.10 21.00 3.4 4 4.8 0.849257 0.99901 0.768049 0.998574 

12.75 17.25 15.00 2.7 3 3.3 0.81606 0.996906 0.658816 0.994336 

13.5 17.25 15.00 3.15 3.5 3.85 0.78456 0.995469 0.962927 0.999968 

7.65 10.35 9.00 1.6 2 2.4 0.614175 0.969385 0.631263 0.989042 

10.80 13.20 12.00 2.7 3 3.45 0.931793 0.999628 0.998502 1 

14.40 19.8 18.00 2.97 3.5 4.2 0.976563 0.999978 0.737191 0.997661 

5.4 7.2 6.00 2.25 2.5 2.88 0.854482 0.996824 0.746269 0.99532 

10.2 14.4 12.00 2 2.5 3 0.700869 0.989254 0.617284 0.99053 

     Average 0.81597 0.993307 0.765038 0.995679 

 

 
 

Fig. 2: The estimated fuzzy function using the 

proposed method for the given data in Table 3. 

 
Fig. 3: The estimated fuzzy function using the   

S.P.Chen et al.[20] method for the given data in     

Table 3.

(iii) With multiple crisp input and fuzzy output data  

The data set in this example given in Table 4 is related to cognitive response times of the nuclear power plant control 

room crew to an abnormal event and has been introduced by Kao and Chyu et al.[6].  This is a benchmark data set 

for the multiple linear regressions.  

Table 4: Kao and Chyu et al.[6] data set using the proposed approach 

Obs. 
Response 

time 

Indep. variable 

(Inside control 

room 

experience) 

Indep. 

variable(outside 

control room 

experience) 

Indep. 

variable 

(Education) 

Similarity 

measure 

Goodness 

of  fit 

Team 1 (5.83,3.56) 2 0 15.25 0.812942 0.999256 

Team 2 (0.85,0.52) 0 5 14.13 0.215703 0.634848 

Team 3 (13.93,8.5)* 1.13 1.5 14.13 0.099846 0.634827 

Team 4 (4, 2.44) 2 1.25 13.63 0.479478 0.978211 

Team 5 (1.65,1.01) 2.19 3.75 14.75 0.205626 0.649822 

Team 6 (1.58,0.96) 0.25 3.5 13.75 0.257712 0.783691 

Team 7 (8.18,4.99) 0.75 5.25 15.25 0.246676 0.9086 

Team 8 (1.85,1.13) 4.25 2 13.5 0.198126 0.634831 

 * indicates the outlier data Average 0.314514 0.778011 

 

 The fuzzy regression model is obtained by the proposed approach,   

1 2 3(0,4.8741) (0.3791,0) (0,0) (0.3175,0)w w w w w wY X X X        with optimum value h= 0.3259.  In the above Table 4, 
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the third data is an abnormal data. Using the proposed approach which is insensitive to the outlier yielded a better 

result in comparison with existing methods as per the literature, given in Table 5.  The Table 5 explains that the 

mean similarity measure for the proposed model based on Tw- norm arithmetic operations is 0.3145 which has 

effective performance with other existing methods. 

 

Table 5: Comparison of different models available in the literature for the data set in Table 4 

 

Method Estimated fuzzy regression function 

Similarity 

measure 

using [18] 

Proposed 

method 1 2 3(0,4.8755) (0.3791,0) (0,0) (0.3175,0)w w w w w wY X X X        0.315 

Choi and 

Buckley et 

al. [11] 
1 2 32.8273 0.3878 1.0125 0.6185 (0,1.0696,2.0042)Y X X X          0.2155 

Chen and    

Hsueh et 

al.[10] 
1 2 316.7956 1.0989 1.1798 1.8559 (0,2.8888)Y X X X          0.1222 

Hassanpou

r [22] 
1 2

3

( 2.8273,0.0000) (0.3877,0.0000) (1.0125,0.000)

(0.6185,0.1790)

Y X X

X

      


 0.1630 

Shakouri 

and  

Nadimi et 

al.[23] 

1 2 3( 20.08,0) ( 0.16,0.07) ( 0.9,0.32) (1.81,0.15)Y X X X         

 

0.5704 

Taheri and 

Kelkinnam

a et al. 

[12] 

1 2 315.5578 (0.2444,0) (0.9976,0) (1.5142,0) (0,1.13)Y X X X        

 

0.2019 

 

(iv)  With Trapezoidal fuzzy numbers 

 The proposed method with extended objective function is illustrated with trapezoidal fuzzy number given in 

Table 6.  The fuzzy regression model obtained by the proposed method is 

(1.267,7.166,0,0) (2.3867,1.833,0.2,0)w wY X   with the confidence level h=0.4 and the proposed fuzzy 

regression model is given in Fig 4.  The dotted lines represent the proposed fuzzy regression, the vertical lines 

represent the observed fuzzy trapezoidal fuzzy numbers and the continuous lines represent the estimated fuzzy 

regression model by Maleki et al.[25]. From the Fig.4, it is clear that the model proposed by Maleki et al.[25] has 

narrow spread, it could not cover all the observed responses.  But the estimated response using the proposed method 

includes all the observed responses having 71% of goodness of fit with the observed response and a similarity 

measure of 36% with observed response.   

 

Table 6:  Trapezoidal fuzzy data using the proposed method and the method used by[25] 

 

 OBSERVED Proposed 
Maleki et al.[25]  

method 

X LOWER Y1 Y2 UPPER 
Similarity 

measure 
MAPE 

Goodness 

of fit 
Similarity 

measure 

Goodness 

of fit 

1 7 8 9 10 0.2463 0.2401 0.4006 0.3677 0.4843 

2 5.4 6.4 7.4 8.4 0.2895 0.2372 0.5938 0.3690 0.4884 

3 8.5 9.5 10.5 11.5 0.5207 0.0614 0.9367 0.6944 0.9537 

4 12.5 13.5 14.5 15.5 0.3372 0.0936 0.7653 0.3663 0.4802 

5 12.2 13.2 14.2 15.2 0.3884 0.0766 0.8564 0.7143 0.9616 

*    Average 0.3564 0.1418 0.7106 0.5024 0.6736 
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Fig. 4: The Estimated fuzzy linear regression models using the proposed method and Maleki et al.[25]method 

for the dataset in Table 6. 

 

5. PROPOSED METHOD WITH OUTLIER DATASET 
 

When outlier exists with spreads of the response variable, the treatment of outliers using Hung et al.[26] omission 

method and Chen [27] outlier treatment  gives effective results with the dataset.  In this section, examples are illustrated 

that the proposed method is insensitive to outlier data. 

(i) Crisp input –symmetric fuzzy output: 

The dataset is originally proposed by Tanaka et al.[1] and modified by Lee and Chang et al.[8] to introduce outliers.   

There is only one outlier in the dataset given in Table 7 and the outlier happens only in the spread of the 8th observed 

response. This example explains that the proposed approach is insensitive to outliers.  The comparison of the results 

obtained from our approach to the one given by Chen [27] and Lee and Chang et al.[8] is given in Table 8.  The 

comparison results show that the proposed model has high similarity measure, better goodness of fit and MAPE value 

nearest to zero.  The estimated models from this work and the one proposed by Chen [27] and Lee et al.[8] are given in 

the Fig.5.   

Table 7: The effect of the proposed approach on the Crisp input fuzzy output data set 

 

X 
Output – Y 

),( eY  
Similarity 
measure  

Goodness of 
fit  

MAPE 

1 (8.0,1.8) 0.378301 0.917736 0.205425 

2 (6.4,2.2) 0.362201 0.917709 0.275141 

3 (9.5,2.6) 0.682361 0.994738 0.049 

4 (13.5,2.6) 0.366314 0.929735 0.128141 

5 (13.0,2.4) 0.635042 0.991469 0.044208 

6 (15.2,2.3) 0.847961 0.999139 0.011796 

7 (17.0,2.2) 0.844666 0.999064 0.010818 

8 (19.3,4.8)* 0.762486 0.998692 0.01614 

9 (20.1,1.9) 0.590633 0.985369 0.034483 

10 (24.3,2.0) 0.370055 0.917708 0.070053 

Average 0.584002 0.965136 0.08452 

 * Outlier 

 

Table 8: Comparison between different methods exists in the literature for the dataset given in Table 7 

Approach Model Similarity 

measure  

Goodness 

of fit  

MAPE 

Proposed work 
w wY (4.552,3.8098) (1.8046,0) X    0.584002 0.965136 0.08452 

Chen’s [27] 

method  
Y (4.75,4.55) (1.85, 0.15)X    

0.50314 0.972654 
0.10085 

Lee’s [8] 

method  
Y (4.43,3.76) (1.86,0.14)X   

0.553184 0.968988 
0.092012 
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Fig. 5: Comparison between Chen [27] method, Lee and Chang et al.[8] method and our approach when outlier 

exists in Crisp input and fuzzy output. 

From the above Fig. 5, the estimated responses have very good accuracy in results, which results the narrow spread 

for the estimated responses.  The estimated responses have central tendency which has the mean similarity measure 

of 58% and the mean absolute percentage error value 0.08, which is almost nearer to zero. 

 

(ii) Fuzzy input and fuzzy output 

Sakawa and Yano [28] introduced a fuzzy input and fuzzy output data set, which is given in Table 9.  Many 

approaches present in the literature in [2,3,6,20,28,29,30,31] have used this data without the outliers. Our approach is 

insensitive to outlier which illustrates the behavior of the estimated fuzzy linear model for the data set in Table 9.  

The dashed and continuous lines show the estimated fuzzy output using the proposed approach and the observed 

fuzzy outputs, respectively.  From the Fig. 6, it is very clear that the proposed approach is not sensitive to outliers.  

The estimated fuzzy function for the above data with outlier is w wY (2.7898,0.7803) (0.6136,0) X    with     h= 

0.25. Fig.6 also shows that the estimated responses have the central tendency.  

 

Table 9: Sakawa and Yano[28] Data set using the proposed approach 

Obs. 
Indep. variable 

(x, )  

Dependent variable 

(y,e)  
Similarity 

measure 

Goodness of 

fit 
MAPE 

1 (2.0,0.5) (4.0,0.5) 0.983284 0.999824 0.00425 

2 (3.5,0.5) (5.5,0.5) 0.640000 0.824458 0.102273 

3 (5.5,1.0) (7.5,1.0) 0.428229 0.569795 0.178027 

4 (7.0,0.5) (6.5,0.5) 0.630915 0.811574 0.090000 

5 (8.5,0.5) (8.5,2.5)* 0.669344 0.977576 0.058118 

6 (10.5,1.0) (8.0,1.0) 0.447848 0.619038 0.154113 

7 (11.0,0.5) (10.5,0.5) 0.510152 0.5698 0.091448 

8 (12.0,0.5) (9.5,0.5) 0.510204 0.569933 0.101053 

  Average 0.602497 0.74275 0.09741 

 *outlier 

 
Fig. 6: Estimated fuzzy regression function for the given data set in Table 9. 
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(iii) when crisp input and trapezoidal fuzzy number output is given along with the outlier in the 8
th

 data 

In this example, the proposed approach on outliers with trapezoidal fuzzy numbers is discussed.  The Table 10 lists 

the data with trapezoidal fuzzy numbers and similarity measure, MAPE and the goodness of fit of the estimated with 

the observed response variable using the proposed method.  The proposed model for the above data is given by 

Y (1.571,7.44,0.594,0) (1.974,1.76,0,0)i w w iX    with the confidence level h= 0.9.  The proposed model has 

50% mean similarity measure with the observed values and the goodness of fit value 96%. 

 

Table 10: Crisp input and Trapezoidal output data with proposed approach taken from [25]  

 

X C1 C2 Lower Upper 
Similarity 

measure 
MAPE 

Goodness 

of fit 

1 7.4 8.6 6.2 9.8 0.423855 0.169913 0.933867 

2 5.6 7 4.2 8.6 0.315023 0.343321 0.868743 

3 8.6 10.3 6.9 12.1 0.523963 0.095972 0.979396 

4 12.6 14.3 10.9 16.1 0.449546 0.090926 0.96289 

5 12.2 13.8 10.6 15.4 0.477509 0.084169 0.967253 

6 14.4 15.9 12.9 17.5 0.552476 0.053409 0.981306 

7 16.3 17.8 14.8 19.2 0.552374 0.047575 0.979967 

8 17.7* 20.9* 14.5* 24.1* 0.708868 0.02128 0.998008 

9 19.4 20.6 18.2 22 0.393025 0.07709 0.921368 

10 23.6 24.9 22.3 26.3 0.549008 0.033852 0.977912 

    Average 0.494565 0.101751 0.957071 

  *outlier 

 
 

Fig. 7: The estimated fuzzy function for the given data in Table 10. 

 

6. CONCLUSION 

Fuzzy linear regression analysis is modelled as an optimization problem where the goal is to minimize the model 

fitting measure.  In the objective function of the optimization problem for comparing the observed and estimated fuzzy 

responses, a similarity measure using graded mean integration representation of fuzzy numbers is considered.  The 

proposed extended fuzzy regression model is illustrated with crisp input/ fuzzy output, non-symmetric fuzzy input and 

fuzzy output, data with crisp multiple inputs and also with trapezoidal fuzzy data. The results show that the model 

obtained by solving the optimization problem using LINGO13.0 is either superior or Pareto-equivalent to the ones in the 

literature.  All the methods for the detection of outliers in fuzzy linear regression in the literature are the improvements 

on the possibilistic approaches.  The goal of the possibilistic approaches is to cover the spreads of the outputs as much as 

possible.   Using the proposed method without deleting the outlier data, the estimated fuzzy regression model is 

insensitive to the outlier in the case of spreads of the observed dataset.  The extended objective function can be changed 

with different types of least absolute deviation between the observed and estimated fuzzy numbers along with the 

similarity measure.  The future work is to get the best model which fits the negative observed data. 
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