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_________________________________________________________________________________ 

ABSTRACT--- In this paper, we investigate the onset of buoyancy driven thermal convection in a horizontal layer of 

fluid with thermally insulating permeable boundaries, using the classical linear stability analysis. It is proved that the 

principle of exchange of stabilities is valid. The eigenvalue problem is solved by using the Galerkin method. Results 

are obtained and discussed  for a wide range of values of the boundary parameters characterizing the permeable 

nature of boundaries. Attention is focused on a situation where the value of the critical Rayleigh number is less than 

that for the case when one of the boundaries is rigid while the other one is free and the convection is not maintained 

in general. In the case, when permeability parameter of either one of the two boundaries varies inversely to that of the 

other, we discover that the critical Rayleigh number decreases and goes through a lowest minimum at a certain value 

of the permeability parameter and this situation pertains when the critical wave number is zero. In addition, existing 

results for various combinations of the boundary conditions namely, when both the bounding surfaces are either 

dynamically free or rigid and when either one of them is dynamically free while the other one is rigid, are obtained as 

limiting cases of the boundary parameters. 
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1. INTRODUCTION 

Convective phenomenon is very common in nature and holds a key role in various scientific and engineering fields and 

play an important part as many physical processes such as the weather, the Earth’s mantle, solar flares and oceanic 

currents to name a few. Stimulated by Bénard ([1], [2]) experiments, the mathematical foundation of thermal instability 

has been laid down by Rayleigh [3] who explained the phenomenon in terms of buoyancy. The buoyancy driven thermal 

convection in a horizontal layer of fluid heated underside is also known as Rayleigh Bénard convection. Rayleigh’s 

theory was further generalized and extended mainly in the nature of refinements of the boundary conditions and methods 

of solutions by many authors and are discussed in the monograph by Chandrasekhar [4]. The onset of convection in a 

horizontal layer of fluid heated from below with thermally conducting permeable boundaries was first discussed by Nield 

[5]. However, Nield’s analysis has the limitation as it gives no insight into the effect of the permeable boundaries which 

may not be identically same and that has been addressed by Gupta et al. [6].  

 

In this paper, we investigate the onset of convection in a horizontal layer of fluid with thermally insulating case of 

permeable boundaries which is more relevant and physically significant. We establish mathematically that the principle 

of exchange of stabilities is valid for the present problem. The single term Galerkin method is used to solve the 

eigenvalue problem. We focus our attention on a situation where the critical Rayleigh number is less than that for the 

case when either one of the boundaries is rigid while the other one is free, and the convection is not maintained in general. 

We discover that when the permeability parameter of either one of the two boundaries varies inversely to that of the other 

one, value of the critical `Rayleigh number decreases and goes through a lowest minimum at a certain value of the 

permeability parameter, and this situation pertains to the zero critical wave number (single cell formation) on the onset of 

convection. In addition, we found that existing results are the limiting cases of the permeability parameters namely, when 

both the bounding surfaces are either dynamically free or rigid, and either one of them is dynamically free while the other 

one is rigid. 
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2. THE EIGENVALUE PROBLEM IN NON-DIMENSIONAL FORM 

 

We consider an infinite horizontal layer of viscous Boussinesq fluid of uniform thickness d  heated from below, whose 

both boundary surfaces are thermally insulating and permeable on which the boundary conditions of the type proposed 

by Beavers and Joseph [7] are applicable. We choose a Cartesian coordinate system with x and y axes in the plane of    

the lower boundary and positive direction of the z axis along the vertically upward direction so that the fluid layer is 

confined between the planes at 0z   and  z d  (Fig. 1). A uniform temperature gradient is maintained across the      

layer by maintaining the lower boundary surface at a uniform temperature 0T  and the upper one at 1 T . We wish to 

examine the hydrodynamic stability of the system using linear stability theory under the force field of gravity. 

 
Fig. 1. Schematic representation of a fluid layer heated from below. 

 

Following the usual procedure for obtaining the linearized perturbation equations (Chandrasekhar [4]), the non-

dimensional form of the governing equations are given as 

 
2 2 2 2 2( )( )D a D a p w Ra     ,                                                                                                                  (1) 

2 2( )rD a pP w    .                                                                                         (2) 

where w  is the z-component of the perturbation velocity,   is the temperature perturbation, a  is the horizontal  wave 

number,  /rP    is the Prandtl number,  4 /R g d   is the Rayleigh number,  is the volume coefficient of 

thermal expansion, 0 1( ) /T T d    is the maintained temperature gradient, g is the gravitational acceleration,   is the 

kinematic viscosity,   is the thermal diffusivity,  r ip p ip   represents the growth rate of perturbations (a complex 

constant in general), as rp  and  ip  are real constants, and  /D d dz .  We have chosen d , 
2 /d  , / d  and  /d    

as the units of length, time, velocity and temperature respectively. 

 

Since both the lower and upper boundary planes are fixed and thermally insulating, the associated boundary conditions 

are: 

 

0w    and  0D     at 0z    and 1z  .                                                                                                (3) 

 

Further, Beavers and Joseph [7] proposed that at a permeable boundary the normal derivative of the tangential velocity is 

directly proportional to that velocity and if the normal is taken into the fluid then the constant of proportionality is 

positive. As described by Gupta et al. [6], the appropriate boundary conditions at the lower permeable boundary and the 

upper permeable boundary are respectively given by 

 
2

0(0) (0) 0D w K Dw  , at 0z  ,                                                                                                                (4)  

and 
2

1(1) (1) 0D w K Dw  , at 1z  .                                                                                                                    (5) 

 

where 0K  and 1K  are non-negative dimensionless parameters, characterizing the permeable nature of the lower and 

upper boundary respectively. 

Equations (1) and (2) together with boundary conditions (3)-(5) pose a double eigenvalue problem for p , for prescribed 

values of a , rP , R , 0K
 
and 1 K . The given normal mode is stable, neutral or unstable according as the real part rp  of 

p  is negative, zero or positive respectively. Further, the marginal state of the system is defined by 0rp  , and if 0rp   

implies that 0ip   for every wave number a  then the ensuing thermal convection is neutral and the ‘principle of 

exchange of stability’ is valid. Otherwise, we will have over-stability at least when instability sets in as a certain mode. 

 

http://www.ajouronline.com/


         Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 05 – Issue 01, February 2017 
 

Asian Online Journals (www.ajouronline.com)  12 

 

3. CHARACTERIZATION OF THE MARIGINAL STATE 

 

The technique of Pellew and Southwell [8] for characterization of the marginal state is applicable to equations (1)-(2) and 

boundary conditions (3)-(5) with the result proved in the following theorem: 

 

Theorem 1. If 0R  , a necessary condition for the existence of nontrivial solutions for w and   satisfying equations (1)-

(2) and boundary conditions (3)-(5) is that 0ip  .  

Proof. Multiplying both sides of equation (1) by w
(the complex conjugate of w ) and integrating from 0z   to 1 ,      

and substituting in this equation for  

1

0

w dz  using equation (2), we have 

2 2 2 2 2 2 2( )( ) ( ) ,rw D a D a p w Ra D a p P                   (6)  

 

where angular bracket denotes ....   the integration with respect to z  from 0  to 1 . Integrating each term of equation (6) 

by parts, for a suitable number of times and making use of boundary conditions (3)-(5), we have  

 
22 2 2 2 2 22 2 2 2 2 2

1 0(1) (0) (2 ) ( ) ( )rK Dw K Dw D w a p Dw a a p w Ra D a p P              ,     (7) 

 

Comparing the imaginary parts of equation (7), we get 

 
2 2 22 2{ } 0,i rp Dw a w Ra P                            (8) 

 

For 0R  , from equation (8), it follows that 0ip  .
 

 

This proves that the principle of exchange of stabilities is valid for the problem under consideration. Hence the marginal 

state is stationary and it is characterized by 0p  . When the marginal state is stationary, the governing equations (1)-(2) 

become 
2 2 2 2( )D a w Ra   ,                    (9) 

 
2 2( )D a w   .                                                                                                                  (10) 

 

Equations (9)-(10)  together with boundary conditions (3)-(5) can now be treated as eigenvalue problem of order six in 

R  for prescribed values of a , 0K  and 1K . 

 

4. SOLUTION OF THE PROBLEM 

 

The single term Galerkin method as described by Finlayson [9] is convenient for solving the present problem. 

Accordingly, the unknown variables w  and   are written as 

 

1w Aw
  

and  1B                                                                                                                                   (11) 

 

where A , B  are constants, 1w
 
and 1  are the trial functions which are chosen suitably satisfying the boundary conditions 

(3)-(5). 

Multiplying equation (9) by w and equation (10) by  , integrating each term of the  equations  with respect to z from 0  to 

1  using the boundary conditions (3)-(5). Substituting for w and   from equation (11) and we obtain the following 

system of linear homogeneous algebraic equations: 

 
2 2 2 2 2 2 4 2 2

1 1 0 1 1 1 1 1 1[ ( (1)) ( (0)) ( ) 2 ( ) ( ) ] 0K Dw K Dw D w a Dw a w A Ra w B          ,                                    (12) 

 
2 2 2

1 1 1 1( ) ( ) 0w A D a B         .                                                                                                                     (13) 

 

The system of equations given by (12)-(13) will have a non-trivial solution if and only if  
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2 2 2 2 2 2 4 2 2 2 2

1 1 0 1 1 1 1 1 12 2

1 1

1
[ ( (1)) ( (0)) ( ) 2 ( ) ( ) ] [ ( ) ( ) ].R K Dw K Dw D w a Dw a w D a

a w
 


          

 
     

(14) 

 

where the angular bracket ...   denotes integration with respect to z  from 0 to 1. We select the trial functions satisfying 

the boundary conditions (3)-(5) as 

4 3 20 1 0 1 0 1 1

1

0 1 0 1 0 1 0 1 0 1 0 1

5 3 12 ( 6) 6
2 2

4( ) 12 4( ) 12 4( ) 12

K K K K K K K
w z z z z

K K K K K K K K K K K K

    
   

        
,              (15) 

1 1  .                                                                                                                 (16) 

 

Substitution of trial functions given by (15)-(16) into the equation (14) yields R  in terms of a , 0K  and 1K  given by 





2

0 1 1

0 1 1 0 1 1

2 2

1 1 0 1 1 0 1 1

4 2

1 1 0 1 1 0 1 1

10

7{ ( 9) 9( 8)}

504{ ( 4) 4( 3)}{ ( 9) 9( 8)}

24 [72{ ( 13) 51} 3 {5 ( 14) 312} { ( 15) 72}]

[76 ( 15) {17 ( 16) 1140} { ( 17) 76} 4464] .

R
K K K

K K K K K K

a K K K K K K K K

a K K K K K K K K

 
  

     

        

        

                          (17) 

 

For given values of 0K
 
and 1K , equation (17) gives the Rayleigh number R  as a function of wave number a .             

The minimum of  R  is the critical Rayleigh number cR  and the value of  a  at which R  attains minimum is the critical 

wave number ca . 

 

5. RESULTS AND DISCUSSION 

 

A close observation of the expression for R given by equation (17), shows that  R  attains its minimum when 0a   for 

any fixed values of the pair 0 1( , )K K . We put 0a   on the right hand side of the expression for R in equation (17) and 

obtain its minimum cR as given by

 
0 1 0 1

0 1 0 1

4( ) 12
720

9( ) 72
c

K K K K
R

K K K K

   
  

   
.                                                                         (18) 

Following results are obtained on using the equation (18) for various limiting cases of boundary parameters 0K  and 1K . 

Case 1. It is easily seen from equations (9)-(10) and boundary conditions (3)-(5) that for the limiting case when  0 0K   

and 1 0K  , we have governing equations for the Rayleigh Bénard problem with both boundaries as dynamically free 

and thermally insulating. In this case, from equation (18), we find that 

12
720 120

72
cR    .                                                                                                                                       (19) 

This is in fact the known exact value for cR  obtained by Nield [5]. 

Case 2. For the case when  0K   and  1K  , we  find that equations (9)-(10) and boundary conditions (3)-(5) 

coincide with the  governing equations for the Rayleigh Bénard problem with both boundaries as rigid and thermally 

insulating.  In this case, from equation (18), we find that 

1
720 720

1
cR    .                                                                                                                                         (20) 

This is in fact the known exact value for cR  obtained by Sparrow et al. [10]. 

Case 3. For the case when either 0 0K   and 1K  ,or 0K   and 1 0K  , we find that equations  (9)-(10) and 

boundary conditions  (3)-(5) coincide with the governing equations for the Rayleigh Bénard problem with either one of 

the boundaries is dynamically free while the other is rigid and each boundary being thermally insulating. In this case, 

from equation (18), we find that 

4
720 320

9
cR    .                                                                                                                                       (21) 

This is in fact the known exact value for cR  obtained by Sparrow et al. [10]. 
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Consequently, limiting cases of the parameters 0K
 
and 1K , give rise to the various combinations of boundary conditions 

namely, when both the boundaries are dynamically free or when both the boundaries are rigid, and when the lower 

boundary is free and upper one is rigid or when the lower boundary is rigid and upper one is free. 

 

In Table 1 we have listed the numerical values of cR  for various fixed values of the pair 0 1( , )K K computed on using the 

equation (18). Table 1 shows that as 1K  increases (for fixed 0K ) the value of cR  increases, and when 0K  increases (for 

fixed 1K ) again the value of cR  increases. 

Table 1. Values of cR  for various fixed values of 0K
 
and 1K . 

0K  1K  cR  

10
-6 

10
-6

 120.00 

10
-6

 10
-1

 122.47 

10
-6

 1 142.22 

10
-6

 10 231.11 

10
-6

 10
6
 320.00 

10
-1 

10
-6

 122.47 

10
-1

 10
-1

 124.96 

10
-1

 1 144.88 

10
-1

 10 234.58 

10
-1

 10
6
 324.39 

1 10
-6

 142.22 

1 10
-1

 144.88 

1 1 166.15 

1 10 262.54 

1 10
6
 360.00 

10 10
-6

 231.11 

10 10
-1

 234.58 

10 1 262.54 

10 10 392.73 

10 10
6
 530.52 

10
6
 10

-6
 320.00 

10
6
 10

-1
 324.39 

10
6
 1 360.00 

10
6
 10 530.52 

10
6
 10

6
 720.00 

 

Fig. 2 illustrates the variation of cR  with both 0K
 
and 1K . Both table 1 and Fig.2 show that increase in value of either of 

the two boundary parameters for fixed value of the other one has stabilizing effect on the onset of convection. 

 

 
Fig. 2. Variation of 

cR with 
0T  when

0 0K  , 
1 1K  and

1K  . 
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In addition, we consider a new theoretical case of possible practical interest which has not been discussed in literature so 

far despite its importance in problems related to science, engineering and technological fields. In this case, we consider 

that value of either of the two parameters characterizing the permeability varies inversely to that of the other, and we let
1

1 0K K  . Equation (18) then yields 

2

0 0

2

0 0

4 13 4
720

9 73 9
c

K K
R

K K

  
  

  
 .                                                                                                                    (22) 

 

In Table 2, we have listed numerical values of cR  for various values of 0K . Table 2 shows that as 0K  increases from 0  

to   , cR decrease from 320 to 166.15, attains the lowest minimum at 0 1K   and then increases to 320. A similar 

variation of cR  with 0K  was found by Gupta et al. [6] for the conducting case of boundary conditions, using the 

Chandrasekhar [4] method. They found that the lowest minimum in the conducting case was 761.22cR 
 
attained at

0 1K  . Compared with the insulating boundary conditions, the constant temperature (conducting) condition is more 

restricting, so that in the latter case there is a greater potential for reduction in the eigenvalue when permeable boundary 

parameters are varied inversely. 

 

                               Table 2. Values of cR  for various values of 0K
 
when 1

1 0K K  . 

0K  cR  

610
 320.00  

110
 234.58  

0.9  166.32  

1.0  166.15  

1.1 166.29  

10  234.58  
610  320.00  

 

Fig. 3 is plotted using the relation (22) and illustrates the variation of cR  with 0K  (when 1

1 0K K  ). It clearly shows that 

increasing values of  0K  from 0 to 1 has the destabilizing effect on the onset of convection, and that the system becomes 

most unstable when 0 1K  . 

 
Fig. 3. Variation of  

cR
 
with 

0K
 
when 

1

1 0 .K K   

 

 

6. CONCLUSION 

 

The linear stability analysis of the Rayleigh Bénard convection problem with insulating permeable boundaries has been 

studied theoretically and the following results are obtained. 

 

1. The principle of exchange of stabilities is valid for the present problem. 
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2. The limiting cases of the boundary parameters 0K  and 1K , give rise to the various particular cases namely, when 

both the boundaries are dynamically free ( 0 0K  , 1 0K  ) or when the lower boundary is free and upper boundary 

is rigid ( 0 0K  , 1K  ) or the lower boundary is rigid and the upper boundary is free ( 0K  , 1 0K  ) or 

when both boundary  rigid ( 0 ,K  1K  ). Table 1  shows  that  as 1K  increases ( for fixed 0K ) the value of cR  

increases, and when  0K  increases ( for fixed  1K ) again the value of cR  increases. Thus, for fixed value of any one 

of the two permeability parameters, increasing values of the other parameter has stabilizing effect on the onset of 

convection. 

3. For the case when 1

1 0K K  , increasing values of  0K  from 0 to 1 has the destabilizing effect on the onset of 

convection and the system becomes most unstable when 0 1K  . 
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