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_________________________________________________________________________________ 

ABSTRACT— The effect of the uniform vertical magnetic field acting opposite to gravity on the onset of steady 

Rayleigh-Bénard-Marangoni convection in horizontal layer of an electrically conducting liquid is investigated, using 

the modified linear stability theory. The upper surface of liquid layer is free where surface tension gradients arise on 

account of variation of temperature and the lower boundary surface is rigid, each subject to the constant heat flux 

condition. Both mechanisms namely, surface tension and buoyancy causing instability are taken into account. The 

Galerkin method is used to obtain the eigenvalue equation which is then computed numerically. Results of this 

analysis indicate that the critical eigenvalues in the presence of a uniform magnetic field are greater in a relatively 

hotter layer of liquid than a cooler one under identical conditions otherwise. The asymptotic behaviour of both the 

Rayleigh and Marangoni numbers for large values of the Chandrasekhar number is also obtained. During the course 

of this analysis, we also correct the inaccuracies in the work of earlier authors. 
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_________________________________________________________________________________________________ 

1. INTRODUCTION 

Quantitative disagreement between theory and experiment has indicated that gravity was present in Bénard’s[1, 2] 

experiments as well as other experiments on convection in a liquid layer with free surface in a laboratory on the earth. 

Therefore, Nield [3] studied the combined effect of both surface tension and buoyancy on the onset of convection, using 

the linear stability theory given by Rayleigh [4], and established that as thickness of the fluid layer decreases the surface 

tension effect becomes more dominant. Further, Nield [5] established that the buoyancy and surface tension effects are 

perfectly coupled when the heat flux across each boundary is kept constant. The stabilizing nature of the magnetic field, a 

fact, that has already been established by Chandrasekhar [6, 7] for the buoyancy driven convection, and by Nield [8] for 

the combined surface tension and buoyancy driven convection. The effect of the magnetic field on the onset of pure 

Marangoni convection in an electrically conducting liquid layer heated from below has been discussed by a number of 

authors notably by Maekawa & Tanasawa [9] and Wilson [10], Hashim and Wilson [11]. Recently, the effect of uniform 

vertical magnetic field on the onset of surface tension and buoyancy driven convection has been studied by Gupta and 

Dhiman [12] for the case wherein lower boundary is conducting and the upper one is insulating, using the modified linear 

stability analysis of Banerjee et al. [13]. 

In this paper, we investigate the effect of a uniform vertical magnetic field on the onset of combined surface tension and 

buoyancy driven convection in a relatively hotter or cooler layer of liquid subject to constant heat flux condition at both 

lower and upper boundaries, using the modified linear stability analysis. The Galerkin method is used to obtain the 

eigenvalue equation analytically. The numerical results obtained for a wide range of the parameters are presented. The 

results of this analysis indicate that the uniform magnetic field suppresses convection more effectively in a relatively 

hotter layer of liquid than the cooler one, irrespective of whether the two mechanisms namely, surface tension and 

buoyancy causing instability act individually or simultaneously. The two mechanisms causing instability are found to 

reinforce each other and are perfectly coupled in the absence of magnetic field. It is found that the two mechanisms 

causing instability no longer remain perfectly coupled for increasing intensity of the magnetic field. Further, it is 

interesting to note that this situation occurs when the critical wave number is zero. Further, the asymptotic behaviour of 

both the Rayleigh and Marangoni numbers for large value of the Chandrasekhar number is also obtained. A detail 

description of the marginal stability curves showing the influence of the magnetic field on the onset of convection in a 

relatively hotter or cooler layer of liquid is also presented. During the course of this analysis, we found that Isa et al. [14] 

made a small but significant error while choosing the velocity trial function as a fourth order polynomial not justifying 
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the requirement of selecting the lowest order polynomial (Finlayson [15]) satisfying the three boundary conditions, when 

surface tension effects are present under the influence of magnetic field. In this case, we shall correct the inaccuracies in 

the results of Isa et al. [14]. 

2. FORMULATION OF THE PROBLEM 

We consider an infinite horizontal liquid layer of viscous, incompressible and electrically conducting fluid of uniform 

thickness d heated from below, in the presence of a uniform vertical magnetic field H  acting opposite to the gravity g . 

The lower boundary surface of the layer of liquid is rigid and the upper surface is free non-deformable where surface 

tension gradients arise on account to variation of temperature with the upper free surface open to the ambient air, where 

surface tension gradients arise due to temperature perturbations. We choose a Cartesian coordinate system of axes with 

the x and y axis in the plane of the lower surface and the z-axis along the vertically upward direction so that the fluid is 

confined between the planes at z = 0 and z = d. A temperature gradient is maintained across the layer by maintaining the 

lower boundary at a constant temperature T0 and the upper boundary at T1 (< T0). The surface tension on the upper free 

surface of the fluid is regarded as a function of temperature only which is given by the simple linear law 

1 1(T T )     where the constant 1  is the unperturbed value of   at the unperturbed surface temperature 1T T  and 

1T T( / T )       represents the rate of change of surface tension with temperature, evaluated at temperature 1T , and 

surface tension being a monotonically decreasing function of temperature,   is positive. We wish to examine the 

stability of this configuration under the joint action of buoyancy and surface tension in the light of modified linear 

stability analysis. 

Following Banerjee et al [13], we can write modified linearized perturbation equations under uniform magnetic field in 

the relevant contextas 
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where w is the perturbation velocity,  is the perturbation temperature, zh is the z-component of the perturbation from 

the uniform vertical magnetic field H and ρ is the density of fluid. The kinematic viscosity , the thermal diffusivity

 , the gravitational acceleration g, the magnetic permeability µe, the magnetic resistivity η, the temperature gradient 

  which is maintained and are each assumed to be constant. Further, that coefficient α2 (due to variation in the 

temperature) is a constant that ranges from 0 to 
410
 for the liquid with which we are most concerned.  
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and t denotes time. 

In seeking solutions of the Eqs. (1), (2) and (3), we must satisfy certain boundary conditions. The boundary 

conditions at the lower rigid and thermally insulating surface z = 0 are  
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The boundary conditions at the upper free surface z = d are 
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We now suppose that the perturbations ,w   and zh are of the form 
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where 
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x ya a a   is the wave number of the disturbance and p is a time constant (which can be complex). We now 

introduce the non-dimensional quantities using 
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velocity, time and temperature respectively and putting 
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We now let x, y and z stand for co-ordinates in the new units and omitting asterisk for simplicity, Eq. (1)-(3) and 

boundary conditions (4a, b, c, d)-(5a, b, c, d) can be reduced to the following non-dimensional form 

 
    2 2 2 2 2 2 ,zD a D a p w Q D a Dh      

 
(6)  

 
   2 2 2

2 0 2 0(1 )   1 ,rD a T pP Ra T w       
 
(7)  

  2 2   ,m zD a whpP D   
 
(8) 

 
0, 0, 0, 0, at 0,zw Dw D h z    

 
(9a, b, c, d) 

 

 
20, , 0, 0, at = 1.zw D w D h z     

 
(10a, b, c, d) 

where 2 4 / 4eQ H d  is the Chandrasekhar number, 4 /R g d   is the Rayleigh number, rP /   is the 

thermal Prandtl number, P /m    is the magnetic Prandtl number. 
2/ /M R g d     with

2 /M d  as 

the Marangoni number, characterizes the strength of surface tension relative to buoyancy.  

We restrict our analysis to the case when the marginal state is stationary so that the marginal state is characterized by 

setting 0p   and hz is eliminated from the resulting equations, we obtain 
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In terms of new variables, the non-dimensional form of boundary conditions (9a, b, c)–(10a, b, c) can be written as 

 
(0) 0, (0) 0, (0) 0,w Dw D     (13a, b, c) 

 
2(1) 0, (1) (1), (1) 0.w D w D     (14a, b, c) 

The Eqs. (11)-(12) together with boundary conditions (13a, b, c)-(14a, b, c) constitute an eigenvalue problem of order six. 

3. SOLUTION OF THE PROBLEM 

 

The single term Galerkin method is convenient for solving the present problem. Accordingly, the unknown variables w 

and  are written as 

 1w Aw
 
and 1B , 

 
(15) 

in which A and B are constants and 1w and 1 are the trial functions, which are chosen suitably satisfying the boundary 

conditions (13a, b, c)-(14a, b, c). Multiplying Eq. (11) by w and Eq. (12) by ,  integrating the resulting equations with 

respect to z from 0 to 1 using the boundary conditions (13a, b, c)-(14a, b, c). Substituting for wand   from (15) and 

eliminating A and B from resulting system of equations, we obtain the following eigenvalue equation 
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In Eq. (16),  denotes integration with respect to z between z = 0 and z =1 and suffixes have been dropped for 

simplicity while writing the Eq. (16). The eigenvalue Eq. (16) may be put in the following form 
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We select the trial function  

 

 2 1 3
1 and 1,

4 24 2
w z z z 

  
      

  
 (18) 

such that they satisfy all the boundary conditions (13a, b, c)-(14a, b, c). It is important to remark here that above choice 

of the velocity trial function given by (18) is found to be useful for cases in which the two mechanisms (buoyancy and 

surface tension) causing instability act individually or simultaneously. Substitution of trial functions given by (18) into 

the eigenvalue Eq. (17), we get 
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4. NUMERICAL RESULTS AND DISCUSSION 

The numerical calculations are carried out using the symbolic algebraic package Mathematica, for assigned values of the 

parameters 2 0, T and Q. We seek theminimum of R as a function of the wave number a to obtain values of the critical 

Rayleigh number Rc and corresponding critical wave number ac. Validation of the computer program is achieved through 

verification of existing results obtained by Gupta and Surya [16]. 

 

Case I: When buoyancy is sole agency causing instability. 

 

When 0 (or 0)M   implies that in the absence of surface tension effect, buoyancy is the sole agency causing 

instability. In this case, we obtain R from theeigenvalue Eq. (19) in terms of a, α2T0 and Q as  
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For given values of parameter 2 0 and ,T Q it follows from Eq. (20) that the minimum of R exists at 0a . Thus the 

critical Rayleigh number Rc is given by  
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(21) 

The numerical values of Rc are calculated for various values of 2 0 and ,T Q using Eq. (21) and are presented in Table 1.  

TABLE 1 
Values of Rc for various values of Q when α2T0 = 0, 0.3 and 0.5. 

Q 
2 0 0T   2 0 0.3T   2 0 0.5T   

Rc Rc Rc 

0 320.000 457.143 640.000 

1 335.238 478.912 670.476 

10 472.381 674.830 944.762 

10
2
 1843.810 2634.010 3687.620 

10
3
 15558.100 22225.900 31116.200 

10
4
 152701.000 218144.000 305401.000 

10
6
 15.24×10

6
 21.77×10

6
 30.48×10

6
 

10
8
 15.24×10

8
 21.77×10

8
 30.48×10

8
 

 

When Q = 0, we observe from Table 1 that values of Rc obtained here for various values of 2 0T  agree precisely with 

corresponding values obtained Gupta and Surya [16]. Further, for a prescribed value of 2 0 ,T  Table 1 shows that an 

increase in the value of Q leads to a greater value of Rc indicating that the magnetic field strength has stabilizing effect on 

the onset of convection. On the other hand, for a prescribed value of Q, it is observed that an increase in the value of 

2 0T  leads to a greater value of Rc indicating that hotter the liquid layer more the postponement of the onset of 

instability. It is interesting to note that value of the critical wave number ac is zero.  
The 2 0( , )R T  curves corresponding to neutral stability are plotted in Fig. 1, using the relation (21), for various values of 

Q. From Fig. 1, we observe that R increases with increase in Q indicating that the magnetic field strength has the 

stabilizing effect on the onset of buoyancy driven convection. Further, each curve corresponding to a fixed valueof Q in 

the Fig. 1 illustrates that a relatively hotter layer of liquid is more stable thanthe cooler one under almost identical 

conditions. 
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Fig. 1. Variation of Rc as a function of 2 0T for various values of Q. 

 

The asymptotic behaviour of Rc critically depends on 2 0 ,T for large value of Chandrasekhar number Q. When Q   

asymptotic behaviour of Rc is obtained as 
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Case II: When surface tension is sole agency causing instability. 

 

On substituting Γ = M/R on left hand side of the eigenvalue Eq. (19), we find that 
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When (or 0)R   implies that in the absence of buoyancy effect, surface tension is the sole agency causing 

instability. In this case, we obtain M from the eigenvalue Eq. (23) in terms of a, α2T0 and Q as  
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 For given values of parameter 2 0 and ,T Q it follows from Eq. (24) that the minimum of M exists at 0a . Thus the 

critical Marangoni number Mc is given by  
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(25) The numerical values of Mc are calculated for various values of 2 0 and ,T Q using Eq. (25) 

and are presented in Table 2a.When Q = 0, we observe from Table 2a that values of Mc obtained here for various values 

of 2 0T
 
agree precisely with corresponding values obtained Gupta and Surya [16]. 

TABLE 2a 
Values of Mc for various values of Q when α2T0 = 0, 0.3 and 0.5. 

Q 
2 0 0T   2 0 0.3T   2 0 0.5T   

Mc Mc Mc 

0 48.000 68.571 96.000 

1 49.600 70.857 99.200 

10 64.000 91.429 128.000 

10
2
 208.000 297.143 416.000 

10
3
 1648.000 2354.290 3296.000 

10
4
 16048.000 22925.700 32096.000 

10
6
 16.00×10

6
 22.86×10

6
 32.00×10

6
 

10
8
 16.00×10

8
 22.86×10

8
 32.00×10

8
 

 

When 2 0 0,T   values of Mc for various corresponding values of Q obtained by us agree precisely with those obtained 

by Isa et al [17] corresponding to this case when surface tension is the sole agency causing instability in the presence of 

magnetic field for the basic linear temperature profile. However, values of Mc for various corresponding values of Q 

obtained by us as well as by Isa et al [17] disagree with those obtained by Isa et al [14] corresponding to this case when 

http://www.ajouronline.com/


Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 05 – Issue 01, February 2017 
 

Asian Online Journals (www.ajouronline.com)  6 

surface tension is the sole agency causing instability (R = 0), in the presence of magnetic field for the basic linear 

temperature profile. A comparison between the corresponding values of Mc for various values of Q when R = 0 obtained 

by Isa et al. [14] for the basic linear temperature profile and by us in the present analysis when 2 0 0T   is given in the 

Table 2b. The choice of the velocity trial function given by us in Eq. (18) allows to resolve this disagreement which 

exists in the literature. It is pointed out that Isa et al [14] made a small but significant error while choosing the velocity 

trial function as 
2 (1 )(3 2 )w z z z   [their Eq. (19)] which is a fourth order polynomial satisfying three boundary 

conditions, not justifying the requirement of selecting the lowest order polynomial (a cubic here) particularly in the case 

when surface tension is the sole agency causing instability (Finlayson [15]). However, their results when buoyancy is the 

sole agency causing instability (M = 0) are correct, of course, since in this case 2 (1) 0D w   that is, upper boundary 

becomes stress free.  

TABLE 2b 
Compared Values of Mc for various values of Q when R = 0. 

Q 
Isa et al [14]  Present analysis 

Mc Mc 

0 48.000 48.000 

10 70.857 64.000 

10
2
 276.571 208.000 

  

Further, for a prescribed value of 2 0 ,T Table 2a shows that an increase in the value of Q leads to a greater value of Mc 

indicating that the magnetic field strength has stabilizing effect on the onset of convection. On the other hand, for a 

prescribed value of Q, it is observed that an increase in the value of 2 0T  leads to a greater value of Mc indicating that 

hotter the liquid layer more the postponement of the onset of instability. It is interesting to note that value of the critical 

wave number ac is zero.  
The 2 0( , )M T  curves corresponding to neutral stability are plotted in Fig. 2, using the relation (25), for various values 

of Q. From Fig. 2, we observe that M increases with increase in Q indicating that the magnetic field strength has the 

stabilizing effect on the onset of buoyancy driven convection. Further, each curve corresponding to a fixed value of Q in 

the Fig. 2 illustrates that a relatively hotter layer of liquid is more stable thanthe cooler one under almost identical 

conditions. 

 

 
Fig. 2. Variation of Mc as a function of 2 0T for various values of Q. 

 

The asymptotic behaviour of Mc critically depends on 2 0 ,T for large value of the Chandrasekhar number Q. When 

Q   asymptotic behaviour of Mc is obtained as 

 2 0

1.6
.

(1 )
cM Q

T



 

(26) 

 

Case III: Combined effect of buoyancy and surface tension. 

 

For given values of Γ (> 0), 2 0 ,T  and Q, we note that coefficients of both a
2
and a

4
 in the eigenvalue Eq. (19) are 

positive definite. Hence, the true minimum of R exists when a = 0, and the critical Rayleigh number Rc is obtained as 
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(27) The numerical values of Rc, computed with the aid of Eq. (27), 

for various values of Γ and Q are presented in Table 3. For a fixed value of Q, we observe from Table 3 that value of Rc 

decreases with increase in Γ (or decrease in depth d of the liquid layer). In other words, effect of surface tension in the 

presence of magnetic field causes reduction in the critical Rayleigh number Rc, irrespective of whether the layer of liquid 

is relatively cooler or hotter. From Table 3, we also observe that for a fixed value of Γ, value of Rc increases with 

increase in Q indicating the stabilizing effect of the magnetic field, irrespective of whether the layer of liquid is relatively 

cooler or hotter. Further,we note from Table 3 that an increase in the value of 2 0 ,T  leads to an increased value of Rc 

corresponding to given Γ and Q which means that a relatively hotter layer of liquid is more stable than the cooler one.  

TABLE 3 
Values of Rc for various values of  and Q when α2T0 = 0 and 0.5. 

  

2 0 0T   2 0 0.5T   

Q = 0 Q =10
2
 Q = 10

6
 Q = 0 Q =10

2
 Q =10

6
 

Rc Rc Rc Rc Rc Rc 

0 320.000 1843.810 15.24 ×10 
6
 640.000 3687.620 30.48×10 

6
 

10
-3

 317.881 1832.560 15.15 ×10 
6
 635.762 3665.120 30.29×10 

6
 

10
-2

 300.000 1733.910 14.34×10 
6
 600.000 3467.820 28.68×10 

6
 

10
-1

 192.000 1055.710 86.37×10 
5
 384.000 2111.420 17.28×10 

6
 

0.5 73.846 353.470 27.96×10 
5
 147.692 706.940 55.93×10 

5
 

1 41.739 191.334 14.96×10 
5
 83.478 382.668 29.92×10 

5
 

10 4.729 20.623 158940.000 9.458 41.245 317881.000 

10
2
 0.479 2.078 15989.800 0.959 4.156 31979.600 

10
3
 0.048 0.208 1599.940 0.096 0.416 3199.880 

10
6
 0.000 0.000 1.600 0.000 0.000 3.200 

 

The variation of the critical Rayleigh number Rc with the magnetic field strength Q for various values of Γ when 2 0 0T   

and 0.5 are illustrated in Fig. 3a and Fig. 3b respectively. 

  
 (a) (b)  

Fig. 3. Variation of Rc as a function of Q for various values of Γ when (a) 2 0 0T   (b) 2 0 0.5T   

 

For more clarity, we now discuss the results in terms of the usual parameters R and M when both buoyancy and surface 

tension effects are present and convectionoccurs at zero wave number, that is, when a = 0. The neutral stability condition 

(23) may then be put in the form as 

 

2

2

2 0

1 1

1 8 448
1

(1 ) 30 1 1

12 180

c c

R M Q

R M T

   
     

                    

 

(28) 

Where Rc = 320 is the critical value of the Rayleigh number in the absence of surface tension effect (when 2 0T = 0 and 

Q = 0) and Mc = 48 is the critical value of the Marangoni number in the absence of buoyancy effect (when 2 0T  = 0 and 
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Q = 0). The numerical values of M/Mc (normalized) can be computed using the Eq. (28), for prescribed normalized 

values in R/Rc which value of R equals its critical value corresponding to given Γ , Q and 2 0T  [cf. Table 3]. The 

normalized values of R and M for various values of Q when 2 0T  = 0 and 0.5, are tabulated in Table 4. 

TABLE 4 
Normalised values of R and M for various values of  and Q when α2T0 = 0, and 0.5. 

  
2 0 0T   2 0 0.5T   

Q = 0 Q =10
2
 Q = 10

6
 Q = 0 Q =10

2
 Q =10

6
 

R/Rc M/Mc R/Rc M/Mc R/Rc M/Mc R/Rc M/Mc R/Rc M/Mc R/Rc M/Mc 

0 1.000 0.000 1.000 0.000 1.000 0.000 2.000 0.000 2.000 0.000 2.000 0.000 

10
-3

 0.993 0.007 0.994 0.009 0.994 0.010 1.987 0.013 1.988 0.018 1.988 0.019 

10
-2

 0.938 0.063 0.940 0.083 0.941 0.090 1.875 0.125 1.881 0.167 1.882 0.179 

10
-1

 0.600 0.400 0.573 0.508 0.567 0.540 1.200 0.800 1.145 1.015 1.134 0.080 

0.5 0.231 0.769 0.192 0.850 0.184 0.874 0.462 1.539 0.383 1.699 0.367 1.748 

1 0.130 0.870 0.104 0.920 0.098 0.935 0.261 1.740 0.208 1.840 0.196 1.870 

10 0.015 0.985 0.011 0.992 0.010 0.993 0.030 1.970 0.022 1.983 0.021 1.987 

10
2
 0.002 0.999 0.001 0.999 0.001 0.999 0.003 1.997 0.002 1.998 0.002 1.999 

10
3
 0.000 1.000 0.000 1.000 0.000 1.000 0.000 2.000 0.000 2.000 0.000 2.000 

10
6
 0.000 1.000 0.000 1.000 0.000 1.000 0.000 2.000 0.000 2.000 0.000 2.000 

 

 For a fixed value of Q, we observe from Table 4 that M/Mc increases with decrease in R/Rc , indicating that the two 

agencies causing instability reinforce each other, irrespective of whether the layer of liquid is relatively cooler or 

hotter.The (R, M)-loci corresponding to neutral stability curves for the combined surface tension and buoyancy effects, 

normalized for critical values Rc and Mc for various values of Q when 2 0T  = 0 and 0.5, are plotted in Fig. 4. The stable 

states correspond to the region R <Rc and M <Mc. When Q = 0, the curves corresponding to 2 0T  = 0 (dotted) and 0.5 

(thick) in the (R , M) plane as shown in Fig 4 are straight lines represented by 

 2 0

1
.

(1 )c c

R M

R M T
 


 (29) 

This indicates that there is a maximum reinforcement between the two mechanisms causing instability and the coupling 

between the two mechanisms is perfect in the absence of magnetic field.  

 
Fig.4. Variation of normalized Marangoni and Rayleigh numbers for various values of Q when 

2 0 0T  (dotted curves) and 2 0 0.5T  (thick curve). 

 

As Q increases the locus goes away from the line (29) , showing that the coupling between the two mechanisms causing 

instabilityremains no longer perfect and coupling between them becomes less tight. Also, Fig. 4 illustrates that a 

relatively hotter layer of liquid is more stable than a cooler one under identical conditions, irrespective of whether effect 

of the magnetic field is present or not. 

5. CONCLUSIONS  

 

The problem of the onset of surface tension and buoyancy driven thermal convection in a liquid layer heated from 

below in the presence of uniform vertical magnetic field has been studied theoretically, using the modified linear stability 

analysis. We conclude that 

1. The increase in the magnetic field strength always has stabilizing effect on the onset of convection irrespective of 

whether the two mechanisms causing instability act individually or simultaneously. 
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2. For large value of the Chandrasekhar number, the asymptotic behavior ofthe critical Rayleigh number (in the 

absence of surface tension) as well as 

the critical Marangoni number (in the absence of buoyancy) found to be significantly dependent on whether the layer of 

liquid is relatively hotter or cooler. 

3. The two mechanisms causing instability reinforce each other and are perfectly coupled in the absence of magnetic 

field. For large value of the Chandrasekhar number, the coupling between the two mechanisms causing instability 

remains no longer perfect and it becomes less tight. This situation occurs when the horizontal wave number is zero. 

4. The uniform vertical magnetic field suppresses convection relatively more effectively in a relatively hotter layer of 

liquid than the cooler one. 

These qualitative as well as quantitative changes brought in the theory of surface tension and buoyancy driven 

convection are certainly significant and opens scope of being detected in the laboratory. 
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