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_________________________________________________________________________________ 

ABSTRACT—This paper presents fuzzy lower and upper probabilities for the reliability of series systems. Attention is 

restricted to series systems with exchangeable components. In this paper, we consider the problem of the evaluation of 

system reliability based on the nonparametric predictive inferential (NPI) approach, in which the defining the 

parameters of reliability function as crisp values is not possible and parameters of reliability function are described 

using a triangular fuzzy number. The formula of a fuzzy reliability function and its α-cut set are present. The fuzzy 

reliability of structures defined based on a fuzzy number. Furthermore, the fuzzy reliability functions of series systems 

discussed. Finally, some numerical examples are present to illustrate how to calculate the fuzzy reliability function 

and its α-cut set. In other words, the aim of this paper is present a new method titled fuzzy nonparametric predictive 

inference for the reliability of series systems. 
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_________________________________________________________________________________ 

 

1. INTRODUCTION 

Study on the reliability of the engineering design process is an important part of a system in which future 

performance will be evaluated. Since the future cannot be predicted with certainty be normal in the calculation of 

reliability, methods are used that allow the modeling of uncertainty [11] . This paper provides a new method for statistical 

inference on system reliability on the basis of limited information resulting from component testing. This method is 

called Fuzzy Nonparametric Predictive Inference (FNPI). 

We present FNPI for system reliability, in particular, FNPI for series systems.The theory of imprecise probabilities 

[18], Possibility Theory [13], the theory of interval probability [19, 20] and fuzzy reliability theory [4] have been used as 

a general and promising tool for reliability analysis [11] . Coolen [6] provided an insight into imprecise reliability, 

discussing a variety of issues and reviewing suggested applications of imprecise probabilities in reliability, see [6, 8, 9, 

10, 11] for a detailed overview of imprecise reliability and many references. A nonparametric predictive approach is a 

statistical approach based on few assumptions about probability distributions, with inferences based on data [7]. This 

method assumes exchangeability of random quantities, both related to observed data and future observations, and 

uncertainty is quantified using lower and upper probabilities that derived from Coolen [7]. The nonparametric predictive 

approach that proposed by [7] has proved to be efficient for measuring the probability of outcomes that cannot be done 

using precise probabilities. Nonparametric predictive inference (NPI) is a statistical framework which uses few modeling 

assumptions, with inferences explicitly in terms of future observations. NPI is close in nature to predictive inference for 

the low structure stochastic case as briefly outlined by Geisser [14], which is in line with many earlier nonparametric test 

methods where the interpretation of the inferences is in terms of confidence intervals. NPI provides exactly calibrated 
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frequentist inferences [7], and it has strong consistency properties in theory of interval probability [1]. NPI is always in 

line with inferences based on empirical distributions, which is an attractive property when aiming at objectivity [7]. 

Inrecentyears,manytheoreticalaspectsandavarietyofapplicationsofinferencebasedonHill’sassumption A(n) 

for prediction of probabilities, for one (or more) future values, on the basis of n prior observations, have been presented, 

referringtotheseas‘nonparametricpredictiveinference’(NPI),seee.g.[1, 5, 7, 8, 11]. 

This paper aims at studying the reliability of series systems base on nonparametric predictive inference in a fuzzy 

environment. In some cases, it may not be possible to define reliability of series systems parameters as crisp values. In 

these cases, these parameters can be expressed by linguistic variables. The fuzzy set theory can be used successfully to 

cope the vagueness in these linguistic expressions for the reliability of series systems base on nonparametric predictive 

inference. In this paper, a new method is presented for system reliability. This approach is called Fuzzy Nonparametric 

Predictive Inference (FNPI). It provides a new method for statistical inference on system reliability on the basis of 

limited information resulting from component testing. Formula of a fuzzy reliability function and its  -cut set are 

presented. The fuzzy reliability of structures is defined on the basis of fuzzy number. Furthermore, the fuzzy reliability 

functions of the series system discussed. Finally, some numerical examples are presented to illustrate how to calculate 

the fuzzy reliability function and its  -cut set. In other words, the aim of this paper is to propose a new method titled 

fuzzy nonparametric predictive inference for the reliability of series systems. 

In Section 2 we review briefly the main idea of NPI and Nonparametric Predictive Inference for the reliability of 

series systems. The Fuzzy Nonparametric Predictive Inference for the reliability of series systems is presented in Section 

3, and finally, in section four conclusions and discussion are presented. 

 

2. NON-PARAMETRIC PREDICTIVE INFERENCE FOR A SERIES SYSTEM 

Hill [15] proposed the assumption 
( )nA  for the prediction about future observations. This assumption was proposed 

particularly for situations in which there is no strong prior information about the probability distribution for a random 

quantity of interest. 
( )nA does not assume anything else, and is a post-data assumption related to exchangeability [7]. Hill 

[16] discusses 
( )nA  in detail. Inferences based on 

( )nA  are predictive and nonparametric, and can be considered suitable 

if there is hardly any knowledge about the random quantity of interest, other than the n observations, or if one does not 

want to use such information, e.g. to study effects of additional assumptions underlying other statistical methods [7]. 

( )nA is not sufficient to derive precise probabilities for many events of interest, but it provides optimal bounds for 

probabilities for all events of interest involving     . These bounds are lower and upper probabilities in the theories of 

imprecise probability and interval probability, and as such, they have strong consistency properties. NPI is a framework 

of statistical theory and methods that use these 
( )nA

 
based lower and upper probabilities, and also considers several 

variations of 
( )nA which are suitable for different inferences [7]. Augustin and Coolen [1] proved that the lower and 

upper probabilities obtained based only on the 
( )nA  assumption has strong consistency properties in the theory of 

interval probability [7]. Coolen [5] used 
( )nA  for NPI in the case of Bernoulli data, providing lower and upper 

probabilities for the number of successes in m future trials, based on the number of successes in n observed trials. This 

was possible by considering the same representation for such Bernoulli data as was used by Bayes [2], namely as balls on 

a table [7]. 

The class of k-out-of-m systems, also called ‘voting systems’,was introducedbyBirnbaum ]3[.These are systems

that consist of m exchangeable [12] components (often the confusing term identical components is used), such that the 

system functions if and only if at least k of its components function. Since the value of m is usually larger than the value 

of k, redundancy is generally built into a k-out-of-m system. Both parallel and series systems are special cases of the k-

out-of-m system. A series system is equivalent to an m-out-of-m system while a parallel system is equivalent to a 1-out-

of-m system [11]. 

Applications of k-out-of-m systems can e.g. be found in the areas of target detection, communication, safety 

monitoring systems, and, particularly, voting systems. The k-out-of-m systems are a very common type in fault-tolerant 

systems with redundancy. They have many applications in both industrial and military systems. Fault-tolerant systems 

include the multi-display system in a cockpit, the multiengine system in an airplane, and the multi-pump system in a 

hydraulic control system [11]. 

 

Definit ion 1 (The      assumption of Hill )[1].   

Assume that                   are continuous and exchangeable random quantities. Let the ordered observed values of 

            be denoted by                   , and let         and          for ease of notation. Assume 
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that the possibility of the existence of a nod is zero, and observations specify the real line as     intervals in the form 

of                  for            . 

For a future observation of      based on n observations, assumption      is written as: 

                                 
 

   
                            

This assumption implies that the rank of      amongst the observed                   has equal probability to be 

any value in            . 

 

Definit ion 2[1].  Assume that ℬ is the Borel σ  field on ℝ. For each element   ℬ, function sets      and      for 

the event       ℬ based on the intervals              and the assumption      are defined as: 

             
 

   
                                              

             
 

   
                                        

 

Theorem 1. Assume a n m  numberofBernoulli’sexchangeableexperiments whose result can be success or failure. 

Assume: 

1

n m

nY 

   TherandomvariableofnumberofsuccessesofmBernoulli’sfuture( n 1to n m ) experiments. 

1

nY   The randomvariableofthenumberofsuccessesinnBernoulli’sprevious(1to n  experiments. 

For the sake of simplicity we define 
0r

 0
s

s

 
 

 
, therefore, the higher and lower probabilities of non-parametric 

predictive inference are  

 

  

   1 1

1
1

                                      

1

| 1n m n
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t s rs r n s m rn m j jj
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and 

   | |n m n n m c n

n t n tY R Y s P Y R Y sP  

      1 1 1 11  

Where  t tr ,   ,  rR  1  with            tr r r m   1 2 ,  t m  1 1 and  c

t t  , ,   ,  m \ RR  1 . 

Proof. See [5]. 
 

Corollary 1. Considering a k-out-of-m system, the event 
1

n m

nY k

   is of interest as this corresponds to successful 

functioning of a k-out-of-m system, following n tests of components that are exchangeable with the m components in the 

system considered. Given data consisting of s successes from n components tested, the NPI lower and upper probabilities 

for the event that the k-out-of-m system functions successfully are also denoted by     : | ,P S m k n s  and 

    : | ,P S m k n s , respectively. For  1,2,   ,  mk   and 0 s n   [11] 
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Corollary 2. For the series systems, with k=1, NPI upper and lower probabilities can be substantially simplified to give 

the expressions below, which actually provide insight into the NPI approach for such systems. Representing 
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corresponding lower and upper probabilities for an event A  by ( , )( )P P A , the general results above are, for series 

system [11] 

   
1 1

1
( , ) :1| , ,    0 4

m m

j j

s j s j
P P m n s for s n

n j n j 

   
   

  
 

 

 

3. FUZZY NON-PARAMETRIC PREDICTIVE INFERENCE FOR THE RELIABILITY OF 

SERIES SYSTEMS 

In this Section, we consider the problem of the evaluation of system reliability based on the nonparametric predictive 

inferential (NPI) approach, in which the defining the parameters of reliability function in definite quantities is not 

possible and parameters of reliability function are described using a triangular fuzzy number. 

3.1 Fuzzy Set Theory  

 
The theory of sets and fuzzy logic was first proposed by Zadeh [21]. This theory has found wide applications in many 

fields such as computer, system analysis, electronic and recently in social sciences, economics, and industry. Fuzzy logic 

is a theory for uncertain conditions. This theory can form many of concepts, variables, and systems which are imprecise 

and vague in a mathematical form and provide the way for reasoning, control and decision-making in uncertain 

conditions. In popular speech, if a variable can take a number of terms from the natural language as amounts; we call it a 

linguistic variable. For the formulation of terms in mathematical expressions, we use fuzzy sets to designate terms. In 

otherwords,“ifavariablecantaketermsfromthenaturallanguageasitsamounts,thenitiscalledalinguisticvariablein 

whichtermsarespecifiedbyfuzzysetsdomainsinwhichvariableshavebeendefined”.werecallsameconceptsoffuzzy

set theory used in this article derived from [21, 22]. 

 

Definit ion 3 .  The set A  of R is called a fuzzy number if it satisfies in the following conditions:  

1. A is normal i.e.  0 0 ;  1x R A x   . 

2. A is convex i.e. for each ,   Rx x 1 2  
and each λ [  , ] 1

 
we have 

     (λ λ ) min(  ,   )A x x A x A x  1 2 1 21  

3. A  is the upper semi continuous. 

 
Definit ion 4 ( -  cut of fuzzy set ) .  

The α - cut, αA , consists of elements whose membership degree in A  is not lower than α , i. e. 

 | ( ) ,      A x X A x      1 

The α - cut set of a fuzzy number is a closed interval which is shown as       
    

   in which  

 α  ;  ( )A inf x R A x      

 α  ;  ( )A sup x R A x      

The most used fuzzy numbers are the trapezoidal and triangular fuzzy numbers. Triangular fuzzy numbers, due to 

their simple computations, are used more. 

situation which should be taken into account is to define the number of tested components by linguistic variables. 

3.2 Fuzzy Number of Success in Tested Components(s)  
The number of success in tested components can be defined by linguistic variables. One of the situations which 

should be taken into account is to define the number of functioning items by linguistic variables. Fuzzy numbers can be 

used for showing functioning items. Assume that the number of functioning items is defined by triangular fuzzy number: 

1 2 3( ,  ,  )s TFN s s s  and   1 2 1 3 2 3  ( ( )  , ( ) ) s s s s s s s        

Therefore fuzzy lower non-parametric predictive probability,  
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Too fuzzy upper non-parametric predictive probability, 
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If    be the triangular fuzzy number then 

 
 1 2 1

  

1

(  )m

l

j

P
s s s j

n j






  



   

 
 3 2 3

  

1

(  )m

r

j

P
s s s j

n j






  



  

 
3.2. Fuzzy Numbers of Tested Components(n)  

Another situation which should be taken into account is to define the number of tested components by linguistic 

variables. Fuzzy numbers can be used to represent this definition successfully. Assume that   numbers of tested 

components are defined as the following triangular numbers: 

1 2 3TFN(n ,  n ,  n )n   and      1 2 1 3 2 3  (  , ) n n n n n n n        

So fuzzy lower non-parametric predictive probability 
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Too fuzzy upper non-parametric predictive probability, 
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3.3 Numerical Examples  

 
Example 1  Consider a series system with 5 exchangeable components (so m=5), and the only information available is 

the result of a test of 4 components, also exchangeable with the 5 to be used in the system. Assume that the numbers of 

successes in the testsare expressedas“Approximately2”.Triangular fuzzynumbersaremore suitable toconvert this

definition into a fuzzy number. The number of successes in the tests to be converted to a triangular fuzzy number as

 TFN  1,2,3s  . The FNPI lower and upper probabilities for successful functioning of the system are 

 

http://www.ajouronline.com/


Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 

Volume 04 – Issue 06, December 2016 
 

Asian Online Journals (www.ajouronline.com)  92 

 

 TFN  1,2,3s   

   1  ,3s        

   
1

5 1
| 1

4j

s j
P s s

j
  



   
    

  
  

or 

          ,  l rP P P       

   
5

  

1

1
|

4
l

j

s j
P min s s

j
 



   
  

  
   

   
5

  

1

1

4
r

j

s j
P max |s s

j
 



   
  

  
  

   
5

1

| 0 1
4j

s j
s sP

j
  



  
    

  
  

or 

          , l rP P P   
  

 

   
5

  

1

|
4

l

j

s j
min s s

j
P  



  
  

  
   

   
5

  

1

1
4

r

j

s j
max |sP s

j
 



  
   

  
  

Table (1) and (2) shows α-cuts related to    fuzzy lower nonparametric predictive probability and     fuzzy upper 

nonparametric predictive probability and Figures (1) and (2) show diagrams corresponding membership function.  

Table  1:  α- cuts rela ted to  P   fuzzy lo wer  non-parametr ic  pred ic t ive  probabil i ty.  

     lP      rP        lP      rP   

0 0.0079 0.1667 0.55 0.0234 0.0874 

0.05 0.0089 0.1578 0.60 0.0255 0.0821 

0.10 0.0099 0.1492 0.65 0.0277 0.0769 

0.15 0.0110 0.1410 0.70 0.0301 0.0721 

0.20 0.0122 0.1332 0.75 0.0326 0.0674 

0.25 0.0135 0.1257 0.80 0.0353 0.0630 

0.30 0.0149 0.1186 0.85 0.0381 0.0589 

0.35 0.0164 0.1118 0.90 0.0411 0.0549 

0.40 0.0180 0.1052 0.95 0.0443 0.0512 

0.45 0.0197 0.0990 1 0.0476 0.0476 

0.50 0.0215 0.0931       
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Figure 1:  the d iagram of membership function of lower non -parametr ic  predic t ive probabil i ty.  

 

Table  2:  α- cuts  re lated to P fuzzy upper  non-parametr ic  pred ic t ive probabil i ty.  

     lP      rP        lP      rP   

0 0.0476 0.4444 0.55 0.0990 0.2659 

0.05 0.0512 0.4251 0.60 0.1052 0.2530 

0.10 0.0549 0.4065 0.65 0.1118 0.2407 

0.15 0.0589 0.3885 0.70 0.1186 0.2288 

0.20 0.0630 0.3711 0.75 0.1257 0.2173 

0.25 0.0674 0.3544 0.80 0.1332 0.2063 

0.30 0.0721 0.3382 0.85 0.1410 0.1958 

0.35 0.0769 0.3226 0.90 0.1492 0.1857 

0.40 0.0821 0.3076 0.95 0.1578 0.1760 

0.45 0.0874 0.2932 1 0.1667 0.1667 

0.50 0.9069 0.9785       

 

 
Figure 2:  the d iagram of membership function of upper  non -parametr ic  predic t ive probabil i ty  

 
Example 2  Consider a series system with 5 exchangeable components (so m=5), and the only information available is 

theresultofatestof“Approximately4”components,alsoexchangeablewiththe5tobeusedinthesystem.Assumethat

thenumbersofsuccessesinthetestsareexpressedas“Approximately2”.Triangularfuzzynumbers are more suitable to 

convert this definition into a fuzzy number. The number of components to be converted to a triangular fuzzy number as 
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 TFN  3, 4,5n  and The number of successes in the tests to be converted to a triangular fuzzy number as 

 TFN  1,2,3s  . The FNPI lower and upper probabilities for successful functioning of the system are 
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 TFN  1,2,3s   

   3  ,5n        

   1  ,3s        

     
5

1

1
| ,  0 1

j

s j
P s s n n

n j
   



   
     

  
  

or 

          ,  l rP P P       

     
5

  

1

1
| , l

j

s j
P min s s n n

n j
  



   
   

  
   

     
5

  

1

1
, r

j

s j
P max |s s n n

n j
  



   
   

  
  

Too fuzzy upper non-parametric predictive probability, 
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Table (3) and (4) shows α-cuts related to  P  fuzzy lower non-parametric predictive probability and P  fuzzy upper non-

parametric predictive probability and Figures (1) and (2) show diagrams corresponding membership function.  

Table  3:  α- cuts re lated to  P
 
fuzzy lo wer non-parame tr ic  predict ive probabi l i ty.  

     lP      rP        lP      rP   

0 0.0179 0.0833 0.55 0.0332 0.0632 

0.05 0.0191 0.0815 0.60 0.0347 0.0614 

0.10 0.0204 0.0796 0.65 0.0363 0.0597 

0.15 0.0217 0.0778 0.70 0.0378 0.0579 

0.20 0.0231 0.0759 0.75 0.0394 0.0562 

0.25 0.0245 0.0741 0.80 0.0410 0.0544 

0.30 0.0258 0.0723 0.85 0.0427 0.0527 

0.35 0.0273 0.0704 0.90 0.0443 0.0510 

0.40 0.0287 0.0686 0.95 0.0459 0.0493 

0.45 0.0302 0.0668 1 0.0476 0.0476 

0.50 0.0317 0.0650       
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Figure 3:  the d iagram of membership function of lower non -parametr ic  predic t ive probabil i ty  

 

Table  4:  α- -cuts re lated to P fuzzy upper  non-parame tr ic  predict ive probabi l i ty.  

     lP      rP        lP      rP   

0 0.1071 0.2222 0.55 0.1402 0.1923 

0.05 0.1102 0.2196 0.60 0.1432 0.1895 

0.10 0.1132 0.2169 0.65 0.1462 0.1867 

0.15 0.1162 0.2142 0.70 0.1491 0.1838 

0.20 0.1192 0.2115 0.75 0.1521 0.1810 

0.25 0.1223 0.2088 0.80 0.1550 0.1782 

0.30 0.1253 0.2061 0.85 0.1579 0.1753 

0.35 0.1283 0.2033 0.90 0.1609 0.1724 

0.40 0.1313 0.2006 0.95 0.1638 0.1696 

0.45 0.1343 0.1978 1 0.1667 0.1667 

0.50 0.1373 0.1950       
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4.  CONCLUSIONS 

Despite the usefulness of reliability of series systems base of nonparametric predictive approach, it has the main 

difficulty in defining its parameters as crisp values. Sometimes it is easier to define these parameters by using linguistic 

variables. For these cases, the fuzzy set theory is the most suitable tool to analyze the reliability of series systems base of 

nonparametric predictive approach. The obtained results show that the fuzzy definitions of parameters provide more 

flexibility and more usability. In this article the nonparametric predictive probability has been analyzed for the reliability 

of series systems with fuzzy parameters. We have shown that when the definition of lower and upper predictive 

probability parameters is not possible as crisp values, and when defining the parameters of number of success in tested 

components and number of tested components as crisp values is not possible, these parameters can be expressed in 

linguistic terms, and the fuzzy set theory can be used successfully to overcome ambiguity in such expressions in the form 

of nonparametric predictive reliability of series systems.Wealsocalculatethefuzzyreliabilityfunctionandits -cut set.  

 

5.  REFERENCES 
[1] Augustin, T. and Coolen, F.P.A., “Nonparametric predictive inference and interval probability”, Journal of Statistical 

Planning and Inference, 124, pp. 251-272, 2004. 

[2]Bayes, T., “An essay towards solving a problem in the doctrine of chances”, Philos. Trans. Roy. Soc. London 53, p. 

370-418; 54, pp. 296-325, 1763. 

[3] Birnbaum, Z. W., Esary, J. D. and Saunders, S., “Multi-component systems and structures and their reliability”, 

Technometrics, 3, pp. 55-77, 1961. 

[4] Cai, K-Y., Introduction to Fuzzy Reliability, Kluwer Academic Publishers, Boston, 1996. 

[5] Coolen, F.P.A., “Low structure imprecise predictive inference for Bayes' problem”, Statistics & Probability Letters 

36, pp. 349-357, 1998. 

[6] Coolen, F.P.A., “On the use of imprecise probabilities in reliability”, Quality and Reliability Engineering 

International 20 , pp. 193–202, 2004. 

[7] Coolen, F.P.A., Nonparametric Predictive Inference. Wiley Series in Probability and Statistics, Wiley, 2015. 

[8] Coolen, F.P.A., Coolen-Schrijner, P., Yan, K.J., “Nonparametric predictive inference in reliability”, Reliability 

Engineering and System Safety 78, pp. 185-193, 2002. 

[9] Coolen, F.P.A. and Coolen-Schrijner, P., “Nonparametric predictive inference for k-out-of-m systems”, In Advances 

in mathematical modeling for reliability, (Eds T. Bedford, et al.) pp. 185–192 (IOS Press, Amsterdam), 2008. 

[10] Coolen F.P.A., Utkin L.V., “Imprecise reliability”, In: International Encyclopedia of Statistical Science, M. Lovric 

(Ed.). Springer, pp. 649-650, 2011. 

[11] Coolen-Schrijner, P., Coolen, F.P.A. and MacPhee, I.M., “Nonparametric predictive inference for systems reliability 

with redundancy allocation”, Journal of Risk and Reliability 222, pp. 463-476, 2008. 

[12] De Finetti, B., Theory of Probability, 2 vols. Wiley, London, 1974. 

[13] Dubois, D. and Prade, H., Possibility Theory: An Approach to Computerized Processing of Uncertainty, Plenum 

Press, New York, 1988. 

[14] Geisser, S., Predictive Inference: An Introduction. Chapman & Hall, London, 1993. 

[15] Hill, B.M., “Posterior distribution of percentiles: Bayes' theorem for sampling from a population”, Journal of the 

American Statistical Association 63, pp. 677-691, 1968. 

[16] Hill, B.M., “De Finetti's theorem, induction, and A(n) or Bayesian nonparametric predictive inference (with 

discussion)”, In J.M. Bernardo, et al. (Eds.), Bayesian Statistics 3, pp. 211-241. Oxford University Press, 1988. 

[17] Tian, Z., Zuo, M. J. and Yam, R. C., “Multi-state k-out-of-n systems and their performance evaluation”, IIE 

Transactions, 41, pp. 32-44, 2009. 

[18] Walley, P., Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, London, 1991. 

[19] Weichselberger, K., “Axiomatic foundations of the theory of interval-probability”, In: Mammitzsch, V., 

SchneeweiU, H. (Eds.), Proceedings of the Second GauU Symposion, Section B. De Gruyter, Berlin, pp. 47–64, 1995. 

[20] Weichselberger, K., “The theory of interval-probability as a unifying concept for uncertainty”, Int. J. Approx. 

Reason. 24, pp. 149–170, 2000. 

[21] Zadeh, L.A., Fuzzy sets. Information and Control 8, pp. 338–353, 1965.  

[22] Zimmermann, H.J., Fuzzy set theory and its applications. Kluwer Academic Publishers, Dordrecht, 1991.  

 

http://www.ajouronline.com/

