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_________________________________________________________________________________________________ 

ABSTRACT---- Fuzzy arithmetic is a powerful tool to solve engineering problems with uncertain parameters. In 

doing so, the uncertain parameters in the model equations are expressed by fuzzy numbers, and the problem is 

solved by using fuzzy arithmetic to carry out the mathematical operations in a generalized form. Diophantine 

equations have played an important role in many applications of optimization and decision making problems. This 

work considers the solution of Diophantine equations and Bezout’s Identity with Linear Fuzzy Integer coefficients. 

Overestimation is also addressed. 
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1 INTRODUCTION 

Computing, finance, and rocket science are only a few areas that rely heavily on mathematical computations. With 

these computations several types of errors may occur. Uncertainty, rounding, and approximation errors are only a few. 

Scientists have used interval arithmetic and fuzzy set theory to deal with these errors. Diophantine equations are used 

in factorization strategies in the RSA algorithm, optimization and control design to name only a few applications. In 

this paper we will present a set of numbers that has both properties of real numbers and of interval numbers. The 

hybrid set of numbers are denoted as Linear Fuzzy Real numbers (LFR). Then we will briefly present the set of Linear 

Fuzzy Integers (LFZ). This set is a subset of LFR. The properties of LFZ will allow us to solve a fuzzy unit 

Diophantine equation using the Euclidean Algorithm. 

Fuzzy sets were initially introduced by Bellman and Zadeh [1]. This concept was then adopted to 

mathematical programming by Tanaka et al. [10]. Fuzzy linear programming problem with fuzzycoefficients was 

formulated by Negoita [6]. Zimmerman [11] presented a fuzzy approach to multi-objective linear programming 

problems. Dubois and Prade [2] studied linear fuzzy constraints. Tankaka and Asai [9] proposed a formulation of 

fuzzy linear programming with fuzzy constraints and gave a method for its solution. Neggers and Kim researched 

fuzzy posets [4] and created Linear Fuzzy Real numbers [5]. Linear Fuzzy Real numbers were used by Monk [3] and 

Prevo [7] in the study of fuzzy random variables. Linear Fuzzy Real numbers were also used to optimize the primal 

problems of linear programs with fuzzy constraints[8]. 

The set of LFR is a set that shows true intermediate properties which are unique to the set and not to those of 

either the real numbers or the “general” fuzzy numbers. Because of the unique properties of LFR and thus LFZ, we 

can solve Fuzzy Diophantine equations using the Euclidean Algorithm. The paper is outlined as follows. Operations 

on LFR are considered in Section 2. In Section 3, an introduction of the LFZ, a method of solution to a Diophantine 

Equation and examples. In Section 4, applications and future research are considered. 

2 LINEAR FUZZY REAL NUMBERS 

Considering the real numbers R, one way to associate a fuzzy number with a fuzzy subset of real numbers is as a 

function𝜇 ∶ 𝑅 → [0,1], where the value µ(x) is to represent a degree of belonging to the subset of R. The Linear Fuzzy 

Real numbers as described by Neggers and Kim [5, 3] is a triple of real numbers (a,b,c) where a ≤ b ≤ c of real 

numbers, See Fig. 1, such that: 

1. µ(x) = 1 if x = b; 

2. µ(x) = 0 if x ≤ a or x ≥ c;  

3. µ(x) = (x − a)/(b − a) if a < x < b; 

4. µ(x) = (c − x)/(c − b) if b < x < c. 
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For a real number c, we let𝜖 𝑐 =  𝜇 with associated triple (c,c,c). Then µ is a linear fuzzy real number with µ(c) 

= 1 and µ(x) = 0 otherwise. As a linear fuzzy real number we consider ϵ(c)= μ to represent the real number c itself. 

Thus by this interpretation we note that the set R of all real numbers is a subset of the set containing the linear fuzzy 

real numbers. The set of the linear fuzzy real numbers is a hybrid set showing intermediate properties, 

 

Fig. 1. Linear Fuzzy Real number µ(a,b,c) 

which are unique to the set and not those of either the real numbers or the “general” fuzzy numbers. 

LetLFR = {𝜇 ∶ 𝑅 →  0,1 | 𝜇 is a linear fuzzy real number}. Each µ has a set of descriptive parameters. The base is 

defined as the triple (a,b,c) that occurs in the definition of a linear fuzzy real number. Thus one may write an element of 

LFR as µ = µ(a,b,c). 

2.1 Addition and Subtraction 

Given the linear fuzzy real numbers µ1 = µ(a1,b1,c1) and µ2 = µ(a2,b2,c2), 

µ1 + µ2 is defined by 

µ1 + µ2 = µ(a1 + a2,b1 + b2,c1 + c2). 

This operation is not the usual definition of addition of functions. It is also clear that𝜇 +  𝜖 0 = µ for all µ ∈LFR. For 

subtraction, we have  

μ1 − μ2 = μ(a1 − c2,b1 − b2,c1 − a2). 

 

2.2 Law of trichotomy 

A linear fuzzy real number µ(a,b,c) is defined to be positive if a >0, negative if c <0, and zeroic if a ≤ 0 and c ≥ 0. 

The following properties also hold: 

1. If µ is positive , then −µ is negative; 

2. If µ is negative, then −µ is positive; 

3. If µ is zeroic, then −µ is also zeroic; 

4. If µ1 and µ2 are positive, then so is µ1 + µ2; 

5. If µ1 and µ2 are negative, then so is µ1 + µ2; 

6. If µ1 and µ2 are zeroic, then so is µ1 + µ2; 

7. For any µ, µ − µ is zeroic. 

2.3 Multiplication and Division 

Given the linear fuzzy real numbers µ1 = µ(a1,b1,c1) and µ2 = µ(a2,b2,c2), 

µ1 · µ2 is defined by 

µ1 · µ2 = µ(min{a1a2,a1c2,a2c1,c1c2},b1b2,max{a1a2,a1c2,a2c1,c1c2}). 

Given the linear fuzzy real numbers µ1 = µ(a1,b1,c1) and µ2 = µ(a2,b2,c2), 
𝜇1

𝜇2
 is defined by 

, 

x 

µ ( x ) 

0             a          b                c 

1 
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where
1

𝜇2
=  𝜇(min  

1

𝑎2
,

1

𝑏2
,

1

𝑐2
 , median  

1

𝑎2
,

1

𝑏2
,

1

𝑐2
 , max  

1

𝑎2
,

1

𝑏2
,

1

𝑐2
 ).  

2.4 Functions on LFR 

Given a function 𝑓: 𝑅 → 𝑅 and µ(a,b,c) ∈LFR, f∗(µ) : LFR → LFR is defined as 

f∗(µ) = µ(a∗,b∗,c∗), 

where a∗= min{f(a),f(b),f(c)},b∗=median{f(a),f(b),f(c)},c∗= max{f(a), 

f(b),f(c)}. If a = b or b = c, then a∗= b∗or b∗= c∗. Therefore if a = b = c then it follows that a∗= b∗= c∗, i.e., 𝑓∗ 𝜖 𝑏  =

 𝜖(𝑓 𝑏 ). Hence f∗is an extension of the function f. 

 

2.5 Ordering Properties 

Given µ1,µ2 ∈  LFR, µ1 ≤ µ2 provided that a1 ≤ a2,b1 ≤ b2, c1 ≤ c2. If ), then 0 ≤ a ≤ b ≤ c, hence µ is a 

non-negative linear fuzzyreal number. Therefore if µ is non-negative and zeroic, then a = 0 precisely. If {µi}i∈ I is a 

collection of linear fuzzy real numbers which is bounded above by a linear fuzzy real number µ where µi = µ(ai,bi,ci) ≤ 

µ = µ(a,b,c), it follows that {ai}i∈ I, {bi}i∈ I, and {ci}i∈ I are collections of real numbers bounded above by a, b, and 

c, respectively. By the completeness ofR there exist real numbers sup(ai),sup(bi), and sup(ci). Suppose that sup(ai) 

>sup(bi), then if 2 sup(ai) −sup(bi) >0, there is an aj such that𝑎𝑗 > sup 𝑎𝑖 − 𝜖 > sup⁡(𝑏𝑖) ≥ 𝑏𝑗 , which leads to a 

contradiction. Therefore, sup(ai) ≤ sup(bi) and by a similar argument, sup(bi) ≤ sup(ci). It follows that sup(ai) ≤ sup(bi) 

≤ sup(ci) and thus µ(sup(ai),sup(bi),sup(ci)) is a linear fuzzy real number. Now suppose that µ < 

µ(sup(ai),sup(bi),sup(ci)). Then µ = µ(a,b,c) with a ≤ sup(ai),b ≤ sup(bi), and c ≤ sup(ci) where at least one of these is a 

strict inequality. Given without loss of generality that a <sup(ai), there is an index k such that ak > a so that it is not 

the case that µk ≤ µ and thus µ is not an upper bound for the collection {µi}i∈ I. If µ is such an upper bound, then a ≥ ai 

implies a ≥ sup(ai),b ≥ sup(bi), and c ≥ sup(ci), so that µ(sup(ai),sup(bi),sup(ci)) is the least upper bound. Therefore, 

(LFR,≤) is a complete ordered set. However, it is not linearly ordered. If we let µ1 = µ(3,4,5) and let µ2 = µ(a,5,6) and 

state that a <3, then it is not true that µ1 ≤ µ2 nor is it true that µ1 ≥ µ2. Therefore, µ1 and µ2 are incomparable in this 

order. 

 

2.6 Linear equations on LFR 

Before discussing the Diophantine equation, we must discuss linear equations in the LFR system. A linear equation 

over LFR is an equation of the form 

µ1 · µx + µ2 = µ3 · µx + µ4, 

where the µi are LFR’s for i = 1,2,3,4 and µx is an unknown LFR with a triple of unknown real numbers (α,β,γ). The 

solution set of the general linear equation can be roughly classified as 

1. empty set, 

2. singleton set, 

3. not a singleton set but a bounded set: 

𝛽1 ≤  𝛼 ≤  𝛽 ≤  𝛾 ≤  𝛽2 𝑓𝑜𝑟 𝛽1, 𝛽2 ∈ 𝑅,, 

4. an unbounded set but not all LFR’s are included, 

5. all possible LFR’s are included. 

A solution set that is bounded but not a singleton would imply that µx is not equal to the solution set in a crisp 

sense. Solving these equations through traditional means can be a daunting task. If we define a relation µ1 ≡ µ2 (mod θ) 

iff µ1 −µ2 is zeroic, then𝜇  𝑎, 𝑏, 𝑐  ≡  𝜖 𝑏  (𝑚𝑜𝑑 𝜃) since 𝜇  𝑎, 𝑏, 𝑐 −  𝜖 𝑏 =  𝜇 𝑎 − 𝑏, 0, 𝑐 − 𝑏 . Therefore if we 

define [𝜇1 ] = {𝜇2|𝜇2 ≡ 𝜇1(𝑚𝑜𝑑 𝜃), then [µ(a,b,c)] = [ 𝜖(𝑏)]. Furthermore, in order that𝜖 𝑎 ≡  𝜖  𝑏 (𝑚𝑜𝑑 𝜃), we 

must have 𝜖 𝑎 − 𝜖 𝑏 =  𝜖 𝑎 − 𝑏 zeroic, which can only happen if a = b. Hence, we have a mapping Φ : µ → [µ] 

with the property that if we compose this with the mapping𝑏 →  𝜖(𝑏) then we obtain the sequence 𝑅
𝜖
→𝐿𝐹𝑅

𝜑
→𝐿𝐹𝑅/𝑍, where Z is the set of zeroic elements of LFR, whence LFR/Z is seen to be isomorphic to  itself. If : Z 

→ LFR is the inclusion mapping, then we obtain a further diagram: 
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𝑍
𝜎
→𝐿𝐹𝑅

𝜑
→𝐿𝐹𝑅/𝑍

𝜖
→𝐿𝐹𝑅. 

Thus 𝜇 ∗  𝜇−1 =  𝜇 ∗  𝜇−1 =  𝜖 1 , i.e., [µ] has a multiplicative inverse in LFR/Z. The properties of LFR/Z allow one 

to solve for the solution of fuzzy linear equations using the inverse order of operations. 

 

3 LINEAR EQUATIONS AND DIOPHANTINE LINEAR EQUATIONS 

As stated earlier,a linear equation in LFR is an equation of the form µ1* µx +µ2 = µ3 * µx +µ4 , where µ1,µ2, µ3 and µ4 

are LFR’s and µx = µ(x,y,z) is an unknown LFR. The Linear Fuzzy Real Diophantine problem requires that the solution 

µx as well as µ1,µ2, µ3 and µ4 be elements such that µi = µ(ai,bi,ci) implies that ai,bi,ci∈ 𝑍 for i = 1,2,3,4. Thusµ(a,b,c) ∈
𝐿𝐹𝑍is an integral LFR and behaves much like Z in R. The mapping  

𝑍
𝜎
→𝐿𝐹𝑍

𝜑
→𝐿𝐹𝑍/𝑍

𝜖
→𝐿𝐹𝑍 

where Z is the set of Zeroic elements and LFZ is the set of Linear Fuzzy Integers yields the same properties of the 

mapping of LFR/Z. 

 

3.1 Crisp Greatest Common Divisor and it’s applications 

It has been shown by Neggers [7] that arithmetic operations upon elements of LFR increase the area of = µ(ai,bi,ci). 

This is also known as overestimation. It is a phenomenon typical of fuzzy operations. The overestimation effect is 

responsible for a more or less large discrepancy between the arithmetical solution of a problem and the calculated one. 

In an effort to avoid this, a combination of LFZ/Z unique properties and a re-imagining of the problem is implemented 

in some cases. In particular we use 𝜖 𝑏𝑖 in place of µi = µ(ai,bi,ci) for certain operations and we rewrite certain 

problems in a calculation friendly way to reduce overestimation.  

As a result of this we will define the Crisp GCD of LFZ, CGCD, as d = 𝜖 𝑏 such that d | µi = µ(ai,bi,ci) i= 

1,2,3,4,5…and if there is an element w ≥ 𝑑 𝑎𝑛𝑑 w | µi = µ(ai,bi,ci) i= 1,2,3,4,5…then d = w. The CGCD will 

essentially be the GCD of 𝜖 𝑏𝑖  for a given set of LFZ numbers.Note that for d|µ(ai,bi,ci)where a,b,c, and d > 0 in 

LFZ, yields 𝜇  𝑓𝑙𝑜𝑜𝑟  
𝑎𝑖

𝑑
 ,

𝑏𝑖

𝑑
, 𝑓𝑙𝑜𝑜𝑟  

𝑐𝑖

𝑑
  , 𝑎𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛. 

Propositon 3.1: If d divides µa and µb then d divides µa *µx + µb *µy  for all LFZ 

Proof: If d divides µa then µa = µm *d, likewise for µb. Then it follows that   

µa *µx + µb *µy = µm *d* µx + µn *d* µy. Thus d divides µa *µx + µb *µy  for all LFZ. 

□ 

Proposition 3.2 Let µa and µb be LFZ (not both zeroic) with CGCD d. Then an LFZ µc has the form µa *µx + µb *µy  

for some µx , µy ∈ LFZ iff µc is a multiple of d. 

Proof: If µc = µa *µx + µb *µy  where µx , µy ∈ LFZ then since d divides µa and µb, Proposition 3.1 implies that d 

divides µc. 

□ 

Propositon 3.2 implies that µc = µa *µx + µb *µy has a Linear Fuzzy Integer solution if and only if d| µc. 

3.2 Fuzzy Linear Diophantine Equation and Bezout’s Identity 

The Fuzzy Diophantine equation are equations of one or more variables, for which we seek integer solutions. 

One of the simplest of these is the Fuzzy Linear Diophantine equation µc = µa *µx + µb *µy. Derived from this is 

Bezout’s identityd = µa *µx + µb *µy. In fact, dividing by d, and defining 
𝜇𝑎

𝑑
=  𝜇𝛼 and 

𝜇𝑏

𝑑
=  𝜇𝛽 produces the 

equation𝜖(1) = 𝜇𝛼*µx + 𝜇𝛽*µy. It follows that a fuzzy solution to 𝜖(1) = 𝜇𝛼*µx + 𝜇𝛽*µy is  

µx = 𝜖(𝑥)0 + 𝜇𝑦𝑡 and µy = 𝜖(𝑦)0 - 𝜇𝑥𝑡. 

 

 

3.3 Examples of the Application of the Euclidean Algorithm on Unit Fuzzy Linear Diophantine 

Problems 

The following examples illustrate the application of the Euclidean Algorithm to a Fuzzy Linear Diophantine Problem. 
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Example 3.1  

Solve µ(51,52,53)*µx + µ(55,56,57)*µy = 4, where d = 4, thus dividing by 4 we have 𝜇𝛼*µx + 𝜇𝛽*µy= 𝜖(1). 

To reduce overestimation when evaluating the solution, we will use 𝜇𝛼*µx÷µy+𝜇𝛽=𝜇𝜃 . This is a product of dividing 

the unit Diophantine equation by µywhere 𝜇𝜃 is a zeroic value. 

After dividing by 4 we have 

µ(12,13,13)*µx + µ(13,14,14)*µy = 1, note that the LFZ µ(a,b,b) or µ(b,b,c) is a right triangular fuzzy number or LFZ.  

Using the Euclidean algorithm on the numerical values, 13 and 14 we find that 𝜖(𝑥)0 = -1 and 𝜖(𝑦)0 = 1. Thus for µx = 

𝜖(𝑥)0 + 𝜇𝑦𝑡 and µy = 𝜖(𝑦)0 - 𝜇𝑥𝑡, we have  

µx = µ(12,13,13) and µy = µ(-12,-12,-11) 

Now, we check our solution, when t=1 using the aforementioned equation𝜇𝛼*µx÷µy+𝜇𝛽  

We have µ(12,13,13) * µ(12,13,13) ÷µ(-12,-12,-11) + µ(13,14,14) = µ(-2,0,2). 

 

Example 3.2  

Solve µ(7919,7920,7921)*µx + µ(4535,4536,4537)*µy = 72, where d = 72, thus dividing by 72 we have 𝜇𝛼*µx + 

𝜇𝛽*µy= 𝜖(1). 

After dividing by 72 we have 

µ(109,110,110)*µx + µ(62,63,63)*µy = 1.  

Using the Euclidean algorithm on 110 and 63 we find that 𝜖(𝑥)0 = -4 and 𝜖(𝑦)0 = 7. Thus for µx = 𝜖(𝑥)0 + 𝜇𝑦𝑡 and µy = 

𝜖(𝑦)0 - 𝜇𝑥𝑡, we have  

µx = µ(58,59,59) and µy = µ(-103,-103,-102) 

Setting t=1, for 𝜇𝛼*µx÷µy+𝜇𝛽  

We have µ(7919,7920,7921) * µ(58,59,59) ÷µ(-103,-103,-102)+ µ(4535,4536,4537) = µ(-1,0,2). 

 

Thus in both examples, µx and µy are viable solutions. 

 

4 CONCLUSION 

From our examples, it is clear that we can find a crisp solution by projecting to the middle,µ(a,b,c) → 𝜖(𝑏). At the 

same time the method outlined produces a fuzzy solution in the form of an LFZexpression, which can be used directly 

as a fuzzy value or a fuzzy interval. In the future, LFZ may be applied to not just Linear Fuzzy Diophantine equations 

of two variables, but of three or more. LFZ may also provide useful insight in Simultaneous Linear Fuzzy Diophantine 

Equations as well as Fuzzy Number Theory. 
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