ON BOUNDED LINEAR OPERATORS IN *b*-HILBERT SPACES AND THEIR NUMERICAL RANGES

MAHNAZ KHANEHGIR AND FIROOZEH HASANVAND

ABSTRACT. In this paper, we introduce the notions of *b*-bounded linear operator, *b*-numerical range and *b*-numerical radius in a *b*-Hilbert space and describe some of their properties. Then we will show that this new numerical range (radius) can be considered as a usual numerical range (radius) in a Hilbert space, so it shares many useful properties with numerical range (radius).

1. INTRODUCTION AND PRELIMINARIES

Quadratic forms and their applications appear in many parts of mathematics and the sciences. A natural extension of these ideas in finite- and infinite-dimensional spaces leads us to the numerical range [7]. The subject has been studied by great mathematicians like K. E. Gustafson, D. K. M. Rao, R. Bahatia, F. Kittaneh, S. S. Dragomir, M. S. Moslehian and others (cf. e.g. [2, 4, 7, 8, 10, 12] and also to the references cited therein), and they have contributed a lot for the extension of this branch of mathematics.

The concept of linear 2-normed spaces was investigated by S. Gähler in 1964 [5], and has been developed extensively in different subjects by many authors [6, 13, 15, 16]. A concept which is closely related to 2-normed space is 2-inner product space which has been intensively studied by many mathematicians in the last three decades. A systematic presentation of the recent results related to the theory of 2-inner product spaces as well as an extensive list of the related references can be found in the book [3].

In the following we provide some notations, definitions and auxiliary facts which will be used later in this paper.

²⁰¹⁰ Mathematics Subject Classification. Primary 46C50; Secondary 47A12.

Key words and phrases. b-Hilbert space, bounded linear operator, 2-inner product space, 2-normed space, numerical range, numerical radius.

Definition 1.1. Let \mathcal{X} be a linear space of dimension greater than 1 over the field \Bbbk , where \Bbbk is the real or complex numbers field. Suppose that $\langle ., .|. \rangle$ is a \Bbbk -valued function defined on $\mathcal{X} \times \mathcal{X} \times \mathcal{X}$ satisfying the following conditions:

(11) $\langle x, x | z \rangle \ge 0$ and $\langle x, x | z \rangle = 0$ if and only if x and z are linearly dependent,

 $(I2) \langle x, x | z \rangle = \langle z, z | x \rangle,$

 $(I3) \langle x, y | z \rangle = \overline{\langle y, x | z \rangle},$

(I4) $\langle \alpha x, y | z \rangle = \alpha \langle x, y | z \rangle$ for all $\alpha \in \mathbb{k}$,

(I5) $\langle x_1 + x_2, y | z \rangle = \langle x_1, y | z \rangle + \langle x_2, y | z \rangle.$

Then $\langle ., .|. \rangle$ is called a 2-inner product on \mathcal{X} and $(\mathcal{X}, \langle ., .|. \rangle)$ is called a 2-inner product space (or 2-pre Hilbert space).

From the definition of 2-inner product it is easy to verify the following assertions:

(i)
$$\langle 0, y | z \rangle = \langle x, 0 | z \rangle = \langle x, y | 0 \rangle = 0$$

 $(ii) \ \langle x, \alpha y | z \rangle = \overline{\alpha} \langle x, y | z \rangle.$

(*iii*) $\langle x, y | \alpha z \rangle = |\alpha|^2 \langle x, y | z \rangle$, for all $x, y, z \in \mathcal{X}$ and $\alpha \in \mathbb{k}$.

Using the above properties, we can prove the Cauchy-Schwarz inequality

$$|\langle x, y | z \rangle|^2 \le \langle x, x | z \rangle \langle y, y | z \rangle.$$

Example 1.2. (see [1, Example 1.1]) If $(\mathcal{X}, \langle ., . \rangle)$ is an inner product space, then the standard 2-inner product $\langle ., . | . \rangle$ is defined on \mathcal{X} by

$$\langle x, y | z \rangle = \begin{vmatrix} \langle x, y \rangle & \langle x, z \rangle \\ \langle z, y \rangle & \langle z, z \rangle \end{vmatrix} = \langle x, y \rangle \langle z, z \rangle - \langle x, z \rangle \langle z, y \rangle,$$

for all $x, y, z \in \mathcal{X}$.

In any 2-inner product space $(\mathcal{X}, \langle ., . | . \rangle)$ we can define a function $\|., .\|$ on $\mathcal{X} \times \mathcal{X}$ by

(1.1)
$$||x, z|| = \langle x, x|z \rangle^{\frac{1}{2}},$$

for all $x, z \in \mathcal{X}$. It is easy to see that, this functions satisfies the following conditions: $(N1) ||x, z|| \ge 0$ and ||x, z|| = 0 if and only if x and z are linearly dependent, (N2) ||x, z|| = ||z, x||, $(N3) ||\alpha x, z|| = |\alpha| ||x, z||$ for all $\alpha \in \mathbb{k}$, $(N4) ||x_1 + x_2, z|| \le ||x_1, z|| + ||x_2, z||$. Any function ||.,.|| defined on $\mathcal{X} \times \mathcal{X}$ and satisfying the conditions (N1)-(N4) is called a 2-norm on \mathcal{X} and $(\mathcal{X}, \|., .\|)$ is called a linear 2-normed space. Whenever a 2-inner product space $(\mathcal{X}, \langle ., .|. \rangle)$ is given, we consider it as a linear 2-normed space $(\mathcal{X}, \|., .\|)$ with the norm defined by (1.1).

Let \mathcal{X} be a 2-inner product space. A sequence $\{x_n\}$ of \mathcal{X} is said to be convergent if there exists an element $x \in \mathcal{X}$ such that $\lim_{n \to \infty} ||x_n - x, z|| = 0$, for all $z \in \mathcal{X}$. Similarly, we can define a Cauchy sequence in \mathcal{X} . A 2-inner product space \mathcal{X} is called a 2-Hilbert space if it is complete. That is, every Cauchy sequence in \mathcal{X} is convergent in this space [13]. Clearly, the limit of any convergent sequence is unique. Now suppose that b is a nonzero fixed vector in \mathcal{X} and take z = b, then definition of Cauchy, convergent and 2-Hilbert space change to b-Cauchy, b-convergent and b-Hilbert space [9]. If a sequence $\{x_n\}$ is b-convergent to an element of b-Hilbert space \mathcal{X} say x, then we denote it by $\lim_{n\to\infty} ||.,b|| x_n = x$.

It is easily verified that in any *b*-Hilbert space \mathcal{X} , the mapping $\langle ., .|b \rangle$ is sequentially continuous with respect to semi-norm $\|., b\|$.

Remark 1.3. (see [1, Pages 127-128]) Assume that $(\mathcal{X}, \langle ., .|.\rangle)$ is a 2-Hilbert space and L_{ξ} the subspace generated with ξ for a fix element ξ in \mathcal{X} . Denote by \mathcal{M}_{ξ} the algebraic complement of L_{ξ} in \mathcal{X} . So $L_{\xi} \oplus \mathcal{M}_{\xi} = \mathcal{X}$. We first define the inner product $\langle ., .\rangle_{\xi}$ on \mathcal{X} as following:

$$\langle x, z \rangle_{\xi} = \langle x, z | \xi \rangle.$$

A straightforward calculations shows that $\langle ., . \rangle_{\xi}$ is a semi-inner product on \mathcal{X} . It is wellknown that this semi-inner product induces an inner product on the quotient space \mathcal{X}/L_{ξ} as

$$\langle x + L_{\xi}, z + L_{\xi} \rangle_{\xi} = \langle x, z \rangle_{\xi}, \quad (x, z \in \mathcal{X}).$$

By identifying \mathcal{X}/L_{ξ} with \mathcal{M}_{ξ} in an obvious way, we obtain an inner product on \mathcal{M}_{ξ} . Define

$$||x||_{\xi} = \sqrt{\langle x, x \rangle_{\xi}} \quad (x \in \mathcal{M}_{\xi}).$$

Then $(\mathcal{M}_{\xi}, \|.\|_{\xi})$ is a normed space. Let \mathcal{X}_{ξ} be the completion of the inner product space \mathcal{M}_{ξ} . For each $b \in \mathcal{X}$, we denote by L_b the subspace generated by b. Let $x_1, x_2 \in \mathcal{X}$, then x_1 is said to b-congruent to x_2 , if $x_1 - x_2 \in L_b$.

In the present work, we shall introduce the concept of *b*-bounded linear operator and describe some fundamental properties of it. Then we establish *b*-numerical range (radius) for *b*-bounded linear operators. This numerical range (radius) can be considered as a usual numerical range (radius) in a Hilbert space, so it shares many useful properties with numerical range (radius).

Throughout this paper, unless otherwise specified, \mathcal{X}, H and L_b^{\perp} denote *b*-Hilbert space, Hilbert space with the inner product $\langle ., . \rangle$ chosen to be linear in the first entry, and the orthogonal complement of L_b in H, respectively.

2. Main Result

Definition 2.1. Let \mathcal{X} be a *b*-Hilbert space. A linear operator $T : \mathcal{X} \to \mathcal{X}$ is called *b*bounded if *T* invariants L_b and there is a non-negative real number *M* such that $||T(x), b|| \leq M ||x, b||$ for all $x \in \mathcal{X}$. We define $||T||_b$ infimum of such *M*. Obviously,

$$||T||_b = \sup\{||T(x), b|| : ||x, b|| \le 1\} = \sup\{||T(x), b|| : ||x, b|| = 1\}$$

We denote the set of all *b*-bounded linear operators on the *b*-Hilbert space \mathcal{X} , by $B_b(\mathcal{X})$. It is not hard to see that if $T \in B_b(\mathcal{X})$, then it (sequentially) continuous.

Let T and T' be b-bounded linear operators on the b-Hilbert space \mathcal{X} . They are called equal up to b-congruent if range $(T-T') \subseteq L_b$. Due to the fact $(B_b(\mathcal{X}), \|.\|_b)$ is a semi-normed space.

Similarly a linear functional $f : \mathcal{X} \to \mathbb{C}$ is called *b*-bounded if $f(L_b) = \{0\}$ and there is a non-negative real number M such that $|f(x)| \leq M ||x, b||$ for all $x \in \mathcal{X}$. We define $||f||_b$ infimum of such M. We observe that $||f||_b = \sup\{|f(x)|: ||x, b|| \leq 1\}$ and it defines a norm on the set of all *b*-bounded linear functionals on \mathcal{X} which is denoted by $(\mathcal{X}^*)_b$.

Example 2.2. Let $\mathcal{X} = l^2$ together with the standard 2-inner product. Then $\mathcal{X} = l^2$ is a $(1,0,0,\ldots)$ -Hilbert space. Assume that $T : \mathcal{X} \to \mathcal{X}$ is a map which is defined by $T(a_1, a_2, \ldots) = (a_1, \frac{a_2}{2}, \frac{a_3}{3}, \ldots)$. It is readily verified that T is $(1,0,0,\ldots)$ -bounded linear operator. Indeed, $||T((a_1, a_2, \ldots)), (1,0,0,\ldots)||^2 = \sum_{n=2}^{\infty} \left(\frac{|a_n|}{n}\right)^2 \leq \sum_{n=2}^{\infty} |a_n|^2 = ||(a_1, a_2, \ldots), (1,0,0,\ldots)||^2$.

Example 2.3. Let $L^2([-\pi,\pi]) = \{f : [-\pi,\pi] \to \mathbb{R}, \int_{-\pi}^{\pi} |f(x)|^2 dx < \infty\}$ and let $\mathcal{X} = \{f \in L^2([-\pi,\pi]) : f^{(k)} \in L^2([-\pi,\pi]), k = 1, 2, ...\}$. Then \mathcal{X} with the standard 2-inner product is an e^x -Hilbert space. Define the operator $T : \mathcal{X} \to \mathcal{X}$ by T(f) = f'. An easy computation shows that T invariants L_{e^x} but it is not e^x -bounded. Since $||T(\sin nx), e^x||^2 = n^2(\frac{\pi}{2}(e^{2\pi} - e^{2\pi}))$

 $e^{-2\pi}$) $-\frac{(e^{\pi}-e^{-\pi})^2}{(n+n^3)^2}$) and $\|\sin(nx), e^x\|^2 = \frac{\pi}{2}(e^{2\pi}-e^{-2\pi}) - \frac{n^2(e^{\pi}-e^{-\pi})^2}{(1+n^2)^2}$, then $\|T(\sin nx), e^x\|$ goes to infinity as $n \to \infty$.

Proposition 2.4. Let $\langle ., .|. \rangle$ be the standard 2-inner product on the Hilbert space $H, b \in H$ and $T \in B(H)$ in which T reduces L_b , then $T : (H, \langle ., .|. \rangle) \to (H, \langle ., .|. \rangle)$ is a b-bounded linear operator.

Proof. Clearly if range $(T) \subseteq L_b$, then $||T||_b = 0$. Otherwise, since $T \in B(H)$, so there is a constant M > 0 such that $||T(x)|| \leq M||x||$ for all $x \in H$. On the other hand, we have $H = L_b \oplus L_b^{\perp}$, therefore every element x of H can be written uniquely as y + z for some $y \in L_b$ and $z \in L_b^{\perp}$. Now since T reduces L_b , then by the definition of standard 2-inner product it follows that

$$(2.1) ||T(x),b|| = ||T(y+z),b|| \le ||T(y),b|| + ||T(z),b||$$

= $||T(z),b|| = (||T(z),b||^2)^{\frac{1}{2}} = (||T(z)||^2 ||b||^2 - |\langle T(z),b\rangle|^2)^{\frac{1}{2}}$
= $||T(z)|||b|| \le M ||z|| ||b||.$

Cauchy-Schwarz inequality implies that $|\langle y, b \rangle| = ||y|| ||b||$, thus we find that

$$(2.2) ||x,b||^{2} = ||y+z||^{2}||b||^{2} - |\langle y+z,b\rangle|^{2}$$

= $(||y||^{2} + ||z||^{2})||b||^{2} - |\langle y,b\rangle|^{2}$
= $(||y||^{2} + ||z||^{2})||b||^{2} - ||y||^{2}||b||^{2} = ||z||^{2}||b||^{2}.$

By (2.1) and (2.2), we get the desired result.

Proposition 2.5. Let $\langle ., .|. \rangle$ be the standard 2-inner product on the Hilbert space $H, b \in H$ and $T : (H, \langle ., .|. \rangle) \to (H, \langle ., .|. \rangle)$ be a b-bounded linear operator in which invariants L_b^{\perp} , then T is a bounded linear operator on L_b^{\perp} .

Proof. First suppose that range $(T) \not\subseteq L_b$. Let $x \in L_b^{\perp}$. By virtue of the fact that T invariants L_b^{\perp} and also definition of standard 2-inner product we deduce

$$||T(x)||^{2}||b||^{2} = ||T(x)||^{2}||b||^{2} - |\langle T(x), b \rangle|^{2} = ||T(x), b||^{2}$$

$$\leq ||T||_{b}^{2}||x, b||^{2} = ||T||_{b}^{2}(||x||^{2}||b||^{2} - |\langle x, b \rangle|^{2})$$

$$= ||T||_{b}^{2}||x||^{2}||b||^{2}.$$

Whence $||T(x)|| \leq ||T||_b ||x||$, for each $x \in L_b^{\perp}$ and so $T|_{L_b^{\perp}}$ is bounded. Now if range $(T) \subseteq L_b$, then range $(T|_{L_b^{\perp}}) \subseteq L_b \cap L_b^{\perp} = \{0\}$. It forces that $T|_{L_b^{\perp}} = 0$.

Let \mathcal{X} be a *b*-Hilbert space. As Remark 1.3, denote by \mathcal{M}_b , the algebraic complement of L_b in \mathcal{X} and identifying \mathcal{M}_b by \mathcal{X}/L_b . Also let \mathcal{X}_b be the completion of the inner product space \mathcal{M}_b . Let $T \in B_b(\mathcal{X})$, define the map $T_b : \mathcal{X}_b \to \mathcal{X}_b$ by setting $T_b(z) := \lim_{n \to \infty} T(x_n) + L_b$, where $z = \lim_{n \to \infty} x_n + L_b \in \mathcal{X}_b$. We observe that T_b is a well-defined linear operator. Clearly $T_b = 0$, if range $(T) \subseteq L_b$. Otherwise, the inequality

$$||(T(x_n) + L_b) - (T(x_m) + L_b)||_b \le ||T||_b ||(x_n + L_b) - (x_m + L_b)||_b$$

implies that the sequence $\{T(x_n) + L_b\}$ is Cauchy and so convergent in \mathcal{X}_b .

It is rutin to verify that if T and S are in $B_b(\mathcal{X})$ and α is any scalar in \mathbb{k} , then $(\alpha T + S)_b = \alpha T_b + S_b$ and $(TS)_b = T_b S_b$.

According to Remark 1.3, one obtains that $z = (\lim_{m \to \infty} \|..b\| x_m) + L_b$, where $z = \lim_{n \to \infty} \|.\|_b x_n + L_b \in \mathcal{X}_b$. By virtue of that fact we get the following result.

Proposition 2.6. Let \mathcal{X} be a b-Hilbert space and T be a b-bounded linear operator on \mathcal{X} , then T_b is a bounded linear operator on the Hilbert space \mathcal{X}_b and moreover $||T_b|| = ||T||_b$.

P. K. Harikrishnan et al., [9] proved a version of Riesz representation theorem in framework of *b*-Hilbert spaces. By a slightly modification in the proof of [9, Theorem 3.5] we see that this theorem holds for a *b*-bounded linear functional defined on a *b*-Hilbert space.

Proposition 2.7. Let \mathcal{X} be a b-Hilbert space and f be a b-bounded linear functional on \mathcal{X} . Then there exists a unique $y \in \mathcal{X}$ up to b-congruent such that $f(x) = \langle x, y | b \rangle$ and $||f||_b = ||y, b||$.

Definition 2.8. Let \mathcal{X} be a *b*-Hilbert space. A complex valued function B on $\mathcal{X} \times \mathcal{X}$ is called a conjugate-bilinear functional, if it is linear in the first variable and conjugate-linear in the second. Furthermore, it is called *b*-bounded, if $B(\mathcal{X} \times L_b) = B(L_b \times \mathcal{X}) = B(L_b \times \mathcal{X})$ $L_b) = \{0\}$ and there is a nonnegative real number M such that $|B(x, y)| \leq M ||x, b|| ||y, b||$ for all $x, y \in \mathcal{X}$. We denote by $||B||_b$ the infimum of such M. It is easy to verify that $||B||_b = \sup\{|B(x, y)| : x, y \in \mathcal{X}, ||x, b|| \leq 1, ||y, b|| \leq 1\}$. Trivially $||.||_b$ defines a norm on the set of *b*-bounded conjugate-bilinear functionals on \mathcal{X} . Assume $S \in B_b(\mathcal{X})$, define $B_S(x, y) := \langle S(x), y|b \rangle$ for each $x, y \in \mathcal{X}$. It is easy to verify that B_S is a *b*-bounded conjugate-bilinear functional on \mathcal{X} and $||B_S||_b = ||S||_b$. Now we are in a position to investigate existence of an adjoint ,which is named *b*-adjoint, for a *b*-bounded linear operator defined on a *b*-Hilbert space. Indeed, we will show that if \mathcal{X} is a *b*-Hilbert space and $T \in B_b(\mathcal{X})$, then there exists a unique $T^* \in B_b(\mathcal{X})$ up to *b*-congruent in which $\langle T(x), y | b \rangle = \langle x, T^*(y) | b \rangle$ for each $x, y \in \mathcal{X}$. We use a similar method applied in [11, pp. 98-101] for Hilbert spaces in order to obtain a *b*-adjoint for a *b*-bounded linear operator in a *b*-Hilbert space.

Let \mathcal{X} be a *b*-Hilbert space. Consider equivalence relation \sim on \mathcal{X} , in which $x \sim y$, if $x, y \in L_b$ and $x \sim x$, if $x \in \mathcal{X} - L_b$. In this case equivalence class $\tilde{\mathcal{X}}$ is $\{L_b, \tilde{x} = \{x\} : x \in \mathcal{X} - L_b\}$. We observe that $(\tilde{\mathcal{X}}, \|.\|)$ is a normed space, where

$$\begin{aligned} \tilde{x} + \tilde{y} &= \widetilde{x + y}, \\ \tilde{x} + L_b &= L_b + \tilde{x} = \tilde{x}, \quad L_b + L_b = L_b, \\ \alpha \tilde{x} &= \widetilde{\alpha x}, \quad \alpha L_b = L_b, \end{aligned}$$

 $||L_b\tilde{||} = 0$ and $||\tilde{x}\tilde{||} = ||x,b||$, for each $x, y \in \mathcal{X} - L_b$ and $\alpha \in \mathbb{k}$. Define $\tilde{J} : \tilde{\mathcal{X}} \to (\mathcal{X}^*)_b$ by $\tilde{J}(L_b) = 0$ and if $x \in \mathcal{X} - L_b$, then $\tilde{J}(\tilde{x}) = J_x$, where $J_x(y) = \langle y, x, b \rangle$ for each $y \in \mathcal{X}$. It is easily seen that, \tilde{J} is a surjective isometric conjugate linear operator. Assume that $V : \tilde{\mathcal{X}} \to \mathcal{X}$ defined by $V(L_b) = 0$ and $V(\tilde{x}) = x$ for each $x \in \mathcal{X} - L_b$, clearly V is a linear operator and $||V||_b = \sup\{||V(\tilde{x}), b|| : ||\tilde{x}\tilde{||} \leq 1\} \leq 1$.

Let *B* be a *b*-bounded conjugate-bilinear functional on $\mathcal{X}, U : \mathcal{X} \to (\mathcal{X}^*)_b$ be defined by $(Ux)(y) := \overline{B(x,y)}$. Then *U* is a *b*-bounded conjugate linear operator and by Proposition 2.7, for each $x \in \mathcal{X}$, there exists a unique $z \in \mathcal{X}$ up to *b*-congruent in which $Ux = \phi_z$, where $\phi_z(y) = \langle y, z | b \rangle$. Set $S := V \tilde{J}^{-1}U$, it is a *b*-bounded linear operator on \mathcal{X} . Indeed we have

$$\|V\tilde{J}^{-1}Ux,b\| \le \|V\|_b\|\tilde{J}^{-1}Ux\| = \|V\|_b\|Ux\| \le \sup\{|Ux(y)| : \|y,b\| \le 1\} < \|B\|_b\|x,b\|,$$

for each $x \in \mathcal{X}$. Now if $B_S(x, y) = \langle S(x), y | b \rangle$, then B_S is a *b*-bounded conjugate-bilinear functional on $\mathcal{X} \times \mathcal{X}$, $||B_S||_b = ||S||_b$ and furthermore, $B_S(x, y) = \overline{\langle y, S(x) | b \rangle} = \overline{\langle y, V \tilde{J}^{-1}Ux | b \rangle} = \overline{\langle y, z | b \rangle} = \overline{\langle y, z | b \rangle} = \overline{\langle y, z | b \rangle} = \overline{\langle x, y \rangle} = \overline{Ux(y)} = B(x, y)$. Trivially if x or y are in L_b , then $B(x, y) = B_S(x, y) = 0$. Hence every *b*-bounded conjugate bilinear functional is of the form B_S for some $S \in B_b(\mathcal{X})$.

Theorem 2.9. Let T be a b-bounded linear operator on a b-Hilbert space \mathcal{X} , then there exists a unique b-bounded linear operator $T^* \in B_b(\mathcal{X})$ up to b-congruent such that $\langle T(x), y | b \rangle = \langle x, T^*(y) | b \rangle$ for each $x, y \in \mathcal{X}$. In addition, if S and S' are two b-adjoints of T, then $S_b = S'_b$. *Proof.* Define $B(x,y) = \langle x, T(y) | b \rangle$. It is easily verified that B is a b-bounded conjugatebilinear functional on $\mathcal{X} \times \mathcal{X}$. So

$$B(x,y) = B_S(x,y) = \langle S(x), y | b \rangle$$

for some b-bounded linear operator S on \mathcal{X} . Put $T^* := S$, then T^* is a b-adjoint of T.

Using the same reasoning as [11, Theorem 2.4.1] *b*-adjoint of *T* is unique up to *b*-congruent. It remains to show that $S_b = S'_b$, for *b*-adjoints *S* and *S'* of *T*. For, let $z_1, z_2 \in \mathcal{X}_b$, then $z_1 = \lim_{n \to \infty} x_n + L_b$ and $z_2 = \lim_{m \to \infty} y_m + L_b$ for some sequences $\{x_n\}$ and $\{y_m\}$ in \mathcal{X} . Since S = S' up to *b*-congruent, so for each $n \in \mathbb{N}$, there is a scalar μ_n in which $S(x_n) = S'(x_n) + \mu_n b$. Thus we have

$$\langle S_b(z_1), z_2 \rangle_b = \langle S_b(\lim_{n \to \infty} x_n + L_b), \lim_{m \to \infty} y_m + L_b \rangle_b$$

$$= \langle \lim_{n \to \infty} S(x_n) + L_b, \lim_{m \to \infty} y_m + L_b \rangle_b$$

$$= \lim_{n \to \infty} \lim_{m \to \infty} \langle S'(x_n) + \mu_n b, y_m | b \rangle$$

$$= \lim_{n \to \infty} \lim_{m \to \infty} \langle S'(x_n) + L_b, y_m + L_b \rangle_b$$

$$= \langle S'_b(z_1), z_2 \rangle_b.$$

It follows that $S_b = S'_b$.

As an immediate consequence of the above theorem we have $T = T^{**}$ up to b-congruent.

Let \mathcal{X} be a *b*-Hilbert space and $T \in B_b(\mathcal{X})$, then T is called *b*-selfadjoint if $T = T^*$ up to *b*-congruent or equivalently $\langle T(x), y | b \rangle = \langle x, T(y) | b \rangle$ for each $x, y \in \mathcal{X}$ and it is called *b*-unitary, if $TT^* = T^*T = I$ (identity operator on \mathcal{X}) up to *b*-congruent. Note that if T is *b*-unitary, then range $(T) \not\subseteq L_b$.

Now we are ready to establishing b-numerical range (radius) for a b-bounded linear operator in b-Hilbert spaces. To extend a well-known result in Hilbert spaces to b-Hilbert spaces.

Definition 2.10. Let $T : \mathcal{X} \to \mathcal{X}$ be a *b*-bounded linear operator on a *b*-Hilbert space \mathcal{X} . Then *b*-numerical range of T which is denoted by $W_b(T)$ is $\{\langle T(x), x | b \rangle : x \in \mathcal{X}, ||x, b|| = 1\}$. Also, *b*-numerical radius of T which is denoted by $\omega_b(T)$ is $\sup\{|\langle T(x), x | b \rangle| : x \in \mathcal{X}, ||x, b|| = 1\}$.

A remarkable fact about *b*-numerical range (radius) is its close relation with numerical range (radius) in the usual sense. Indeed, we have $W_b(T) = W(T_b)$ and $\omega_b(T) = \omega(T_b)$.

By virtue of this fact every question about b-numerical range (radius) in a b-Hilbert space can be solved as a question about numerical range (radius) in a Hilbert space.

It is easy to verify that $\omega_b(.)$ is a semi-norm on $B_b(\mathcal{X})$. Furthermore, using Proposition 2.6 and [7, Theorem 1.3.1], we have $\omega_b(T) \leq ||T||_b \leq 2\omega_b(T)$, for each $T \in B_b(\mathcal{X})$.

In the following we extend [7, Theorem 1.2.2] in the framework of *b*-Hilbert spaces.

Theorem 2.11. Let T be a b-bounded linear operator on a b-Hilbert space \mathcal{X} . Then T is b-selfadjoint if and only if $W_b(T) \subseteq \mathbb{R}$.

Proof. Let $z_1 = \lim_{n \to \infty} x_n + L_b$ and $z_2 = \lim_{n \to \infty} y_n + L_b$ be arbitrary elements in \mathcal{X}_b . We get

$$\langle z_1, (T_b)^*(z_2) \rangle_b = \langle T_b(\lim_{n \to \infty} x_n + L_b), \lim_{n \to \infty} y_n + L_b \rangle_b$$

$$= \langle \lim_{n \to \infty}^{\|.,b\|} T(x_n), \lim_{n \to \infty}^{\|.,b\|} y_n | b \rangle$$

$$= \langle \lim_{n \to \infty}^{\|.,b\|} x_n, T^*(\lim_{n \to \infty}^{\|.,b\|} y_n) | b \rangle$$

$$= \langle (\lim_{n \to \infty}^{\|.,b\|} x_n) + L_b, (\lim_{n \to \infty}^{\|.,b\|} T^*(y_n)) + L_b \rangle_b$$

$$= \langle \lim_{n \to \infty} x_n + L_b, (T^*)_b (\lim_{n \to \infty} y_n + L_b) \rangle_b$$

$$= \langle z_1, (T^*)_b (z_2) \rangle_b.$$

Therefore $(T_b)^* = (T^*)_b$. Now if T is b-selfadjoint, then $(T^*)_b = T_b$ and so $(T_b)^* = T_b$. Applying [7, Theorem 1.2.2] we deduce $W_b(T) = W(T_b) \subseteq \mathbb{R}$. Conversely, if $W_b(T) \subseteq \mathbb{R}$, then T_b is a selfadjoint linear operator on the Hilbert space \mathcal{X}_b . That is, $(T_b)^* = T_b$. Consequently for each $x, y \in \mathcal{X}$, $\langle T(x), y | b \rangle = \langle T_b(x + L_b), y + L_b \rangle_b = \langle x + L_b, T_b^*(y + L_b) \rangle_b = \langle x + L_b, T_b(y + L_b) \rangle_b = \langle x, T(y) | b \rangle$. Hence T is b-selfadjoint and so the proof is completed. \Box

In the light of the above discussions we have the following statement.

Suppose that U and I are b-unitary and identity operators on a b-Hilbert space \mathcal{X} , respectively and $T \in B_b(\mathcal{X})$. Then we have

(i) $W_b(\alpha + \beta T) = \alpha + \beta W_b(T)$, for each α and β in k. (ii) $W_b(T^*) = \{\overline{\lambda} : \lambda \in W_b(T)\}.$ (iii) $W_b(U^*TU) = W_b(T).$

MAHNAZ KHANEHGIR AND FIROOZEH HASANVAND

References

- A. Arefijamaal and Gh. Sadeghi, Frames in 2-inner product spaces, Iranian J. Math. Sci. and informatics, 8(2013), no. 2, 123–130.
- [2] R. Bahatia, Matrix analysis, Grad. Texts in Math. 169, Springer-Verlag, New York, 1997.
- [3] Y. J. Cho, P. C. S. Lin, S. S. Kim and A. Misiak, *Theory of 2-inner product spaces*, Nova Science Publishers, Inc. New York, 2001.
- [4] S. S. Dragomir, Some numerical radius inequalities for power series of operators in Hilbert spaces, J. Inequal. Appl. 298(2013) 1–12.
- [5] S. Gähler, Linear 2-normierte Räume, Math. Nachr. 28(1964) 1–43.
- [6] I. Goleţ, On probabilistic 2-normed spaces, Novi. Sad J. Math. 35(2005) no. 1, 95-102.
- [7] K. E. Gustafson and D. K. M. Rao, Numerical range, Springer-Verlag, New York, 1997.
- [8] P. R. Halmos, A Hilbert space problem book(2nd ed.), Springer-Verlag, New York, 1982.
- [9] P. K. Harikrishnan, P. Riyas and K. T. Ravindran, *Riesz theorems in 2-inner product spaces*, Novi. Sad J. Math. 41(2011) no. 2, 57–61.
- [10] O. Hirzallah, F. Kittaneh and K. Shebrawi, Numerical radius inequalities for commutators of Hilbert space operators, Numer. Funct. Anal. Optim. 32(7), (2011) 739–749.
- [11] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Acadmic Press. Inc. New York, 1983.
- [12] F. Kittaneh, M. S. Moslehian and T. Yamazaki, Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl. 471(2015) 46–53.
- [13] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glas. Math. Ser. III, 39(59), (2004) 303–314.
- [14] H. Mazaheri and R. Kazemi, Some results on 2-inner product spaces, Novi. Sad J. Math. 37(2007) no. 2, 35–40.
- [15] Sh. Rezapour and I. Kupka, 1-Type Lipschitz selections in generalized 2-Normed Spaces, Anal. Theory Appl. 24(2008) no. 3, 205–210.
- [16] N. Srivastava, S. Bhattacharya and S. N. Lal, 2-Normed algebras-I, Publ. de L'institut math. Nouvelle srie, tome, 88(102) (2010), 111–121.

DEPARTMENT OF MATHEMATICS, MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY, MASHHAD, IRAN. *E-mail address*: khanehgir@mshdiau.ac.ir,

E-mail address: firozehasanvand@yahoo.com.