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Abstract. In this paper, we introduce the notions of b-bounded linear operator, b-numerical

range and b-numerical radius in a b-Hilbert space and describe some of their properties. Then

we will show that this new numerical range (radius) can be considered as a usual numerical

range (radius) in a Hilbert space, so it shares many useful properties with numerical range

(radius).

1. Introduction and Preliminaries

Quadratic forms and their applications appear in many parts of mathematics and the

sciences. A natural extension of these ideas in finite- and infinite-dimensional spaces leads

us to the numerical range [7]. The subject has been studied by great mathematicians like K.

E. Gustafson, D. K. M. Rao, R. Bahatia, F. Kittaneh, S. S. Dragomir, M. S. Moslehian and

others (cf. e.g. [2, 4, 7, 8, 10, 12] and also to the references cited therein), and they have

contributed a lot for the extension of this branch of mathematics.

The concept of linear 2-normed spaces was investigated by S. Gähler in 1964 [5], and has

been developed extensively in different subjects by many authors [6, 13, 15, 16]. A concept

which is closely related to 2-normed space is 2-inner product space which has been inten-

sively studied by many mathematicians in the last three decades. A systematic presentation

of the recent results related to the theory of 2-inner product spaces as well as an extensive

list of the related references can be found in the book [3].

In the following we provide some notations, definitions and auxiliary facts which will be used

later in this paper.
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Definition 1.1. Let X be a linear space of dimension greater than 1 over the field k, where
k is the real or complex numbers field. Suppose that ⟨., .|.⟩ is a k-valued function defined on

X × X × X satisfying the following conditions:

(I1) ⟨x, x|z⟩ ≥ 0 and ⟨x, x|z⟩ = 0 if and only if x and z are linearly dependent,

(I2) ⟨x, x|z⟩ = ⟨z, z|x⟩,
(I3) ⟨x, y|z⟩ = ⟨y, x|z⟩,
(I4) ⟨αx, y|z⟩ = α⟨x, y|z⟩ for all α ∈ k,
(I5) ⟨x1 + x2, y|z⟩ = ⟨x1, y|z⟩+ ⟨x2, y|z⟩.
Then ⟨., .|.⟩ is called a 2-inner product on X and (X , ⟨., .|.⟩) is called a 2-inner product space

(or 2-pre Hilbert space).

From the definition of 2-inner product it is easy to verify the following assertions:

(i) ⟨0, y|z⟩ = ⟨x, 0|z⟩ = ⟨x, y|0⟩ = 0.

(ii) ⟨x, αy|z⟩ = α⟨x, y|z⟩.
(iii) ⟨x, y|αz⟩ = |α|2⟨x, y|z⟩, for all x, y, z ∈ X and α ∈ k.
Using the above properties, we can prove the Cauchy-Schwarz inequality

|⟨x, y|z⟩|2 ≤ ⟨x, x|z⟩⟨y, y|z⟩.

Example 1.2. (see [1, Example 1.1]) If (X , ⟨., .⟩) is an inner product space, then the standard

2-inner product ⟨., .|.⟩ is defined on X by

⟨x, y|z⟩ =
∣∣∣ ⟨x, y⟩ ⟨x, z⟩
⟨z, y⟩ ⟨z, z⟩

∣∣∣ = ⟨x, y⟩⟨z, z⟩ − ⟨x, z⟩⟨z, y⟩,

for all x, y, z ∈ X .

In any 2-inner product space (X , ⟨., .|.⟩) we can define a function ∥., .∥ on X × X by

(1.1) ∥x, z∥ = ⟨x, x|z⟩
1
2 ,

for all x, z ∈ X . It is easy to see that, this functions satisfies the following conditions:

(N1) ∥x, z∥ ≥ 0 and ∥x, z∥ = 0 if and only if x and z are linearly dependent,

(N2) ∥x, z∥ = ∥z, x∥,
(N3) ∥αx, z∥ = |α|∥x, z∥ for all α ∈ k,
(N4) ∥x1 + x2, z∥ ≤ ∥x1, z∥+ ∥x2, z∥.
Any function ∥., .∥ defined on X × X and satisfying the conditions (N1)-(N4) is called a
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2-norm on X and (X , ∥., .∥) is called a linear 2-normed space. Whenever a 2-inner product

space (X , ⟨., .|.⟩) is given, we consider it as a linear 2-normed space (X , ∥., .∥) with the norm

defined by (1.1).

Let X be a 2-inner product space. A sequence {xn} of X is said to be convergent if there

exists an element x ∈ X such that lim
n→∞

∥xn − x, z∥ = 0, for all z ∈ X . Similarly, we can

define a Cauchy sequence in X . A 2-inner product space X is called a 2-Hilbert space if it

is complete. That is, every Cauchy sequence in X is convergent in this space [13]. Clearly,

the limit of any convergent sequence is unique. Now suppose that b is a nonzero fixed vector

in X and take z = b, then definition of Cauchy, convergent and 2-Hilbert space change to

b-Cauchy, b-convergent and b-Hilbert space [9]. If a sequence {xn} is b-convergent to an

element of b-Hilbert space X say x, then we denote it by lim
n→∞

∥.,b∥xn = x.

It is easily verified that in any b-Hilbert space X , the mapping ⟨., .|b⟩ is sequentially contin-

uous with respect to semi-norm ∥., b∥.

Remark 1.3. (see [1, Pages 127-128]) Assume that (X , ⟨., .|.⟩) is a 2-Hilbert space and Lξ the

subspace generated with ξ for a fix element ξ in X . Denote by Mξ the algebraic complement

of Lξ in X . So Lξ ⊕Mξ = X . We first define the inner product ⟨., .⟩ξ on X as following:

⟨x, z⟩ξ = ⟨x, z|ξ⟩.

A straightforward calculations shows that ⟨., .⟩ξ is a semi-inner product on X . It is well-

known that this semi-inner product induces an inner product on the quotient space X/Lξ

as

⟨x+ Lξ, z + Lξ⟩ξ = ⟨x, z⟩ξ, (x, z ∈ X ).

By identifying X/Lξ with Mξ in an obvious way, we obtain an inner product on Mξ. Define

∥x∥ξ =
√
⟨x, x⟩ξ (x ∈ Mξ).

Then (Mξ, ∥.∥ξ) is a normed space. Let Xξ be the completion of the inner product space

Mξ. For each b ∈ X , we denote by Lb the subspace generated by b. Let x1, x2 ∈ X , then x1

is said to b-congruent to x2, if x1 − x2 ∈ Lb.

In the present work, we shall introduce the concept of b-bounded linear operator and de-

scribe some fundamental properties of it. Then we establish b-numerical range (radius) for
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b-bounded linear operators. This numerical range (radius) can be considered as a usual nu-

merical range (radius) in a Hilbert space, so it shares many useful properties with numerical

range (radius).

Throughout this paper, unless otherwise specified, X , H and L⊥
b denote b-Hilbert space,

Hilbert space with the inner product ⟨., .⟩ chosen to be linear in the first entry, and the

orthogonal complement of Lb in H, respectively.

2. Main Result

Definition 2.1. Let X be a b-Hilbert space. A linear operator T : X → X is called b-

bounded if T invariants Lb and there is a non-negative real number M such that ∥T (x), b∥ ≤
M∥x, b∥ for all x ∈ X . We define ∥T∥b infimum of such M . Obviously,

∥T∥b = sup{∥T (x), b∥ : ∥x, b∥ ≤ 1} = sup{∥T (x), b∥ : ∥x, b∥ = 1}.

We denote the set of all b-bounded linear operators on the b-Hilbert space X , by Bb(X ). It

is not hard to see that if T ∈ Bb(X ), then it (sequentially) continuous.

Let T and T ′ be b-bounded linear operators on the b-Hilbert space X . They are called

equal up to b-congruent if range(T−T ′) ⊆ Lb. Due to the fact (Bb(X ), ∥.∥b) is a semi-normed

space.

Similarly a linear functional f : X → C is called b-bounded if f(Lb) = {0} and there is

a non-negative real number M such that |f(x)| ≤ M∥x, b∥ for all x ∈ X . We define ∥f∥b
infimum of such M . We observe that ∥f∥b = sup{|f(x)| : ∥x, b∥ ≤ 1} and it defines a norm

on the set of all b-bounded linear functionals on X which is denoted by (X ∗)b.

Example 2.2. Let X = l2 together with the standard 2-inner product. Then X = l2

is a (1, 0, 0, ...)-Hilbert space. Assume that T : X → X is a map which is defined by

T (a1, a2, ...) = (a1,
a2
2
, a3

3
, ...). It is readily verified that T is (1, 0, 0, ...)-bounded linear opera-

tor. Indeed, ∥T ((a1, a2, ...)), (1, 0, 0, ...)∥2 =
∞∑
n=2

( |an|
n

)2

≤
∞∑
n=2

|an|2 = ∥(a1, a2, ...), (1, 0, 0, ...)∥2.

Example 2.3. Let L2([−π, π]) = {f : [−π, π] → R,
∫ π

−π
|f(x)|2dx < ∞} and let X = {f ∈

L2([−π, π]) : f (k) ∈ L2([−π, π]), k = 1, 2, . . .}. Then X with the standard 2-inner product

is an ex-Hilbert space. Define the operator T : X → X by T (f) = f ′. An easy computation

shows that T invariants Lex but it is not ex-bounded. Since ∥T (sinnx), ex∥2 = n2(π
2
(e2π −
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e−2π)− (eπ−e−π)2

(n+n3)2
) and ∥ sin(nx), ex∥2 = π

2
(e2π − e−2π)− n2(eπ−e−π)2

(1+n2)2
, then ∥T (sinnx), ex∥ goes

to infinity as n → ∞.

Proposition 2.4. Let ⟨., .|.⟩ be the standard 2-inner product on the Hilbert space H, b ∈ H

and T ∈ B(H) in which T reduces Lb, then T : (H, ⟨., .|.⟩) → (H, ⟨., .|.⟩) is a b-bounded linear

operator.

Proof. Clearly if range(T ) ⊆ Lb, then ∥T∥b = 0. Otherwise, since T ∈ B(H), so there is

a constant M > 0 such that ∥T (x)∥ ≤ M∥x∥ for all x ∈ H. On the other hand, we have

H = Lb ⊕ L⊥
b , therefore every element x of H can be written uniquely as y + z for some

y ∈ Lb and z ∈ L⊥
b . Now since T reduces Lb, then by the definition of standard 2-inner

product it follows that

(2.1) ∥T (x), b∥ = ∥T (y + z), b∥ ≤ ∥T (y), b∥+ ∥T (z), b∥

= ∥T (z), b∥ = (∥T (z), b∥2)
1
2 = (∥T (z)∥2∥b∥2 − |⟨T (z), b⟩|2)

1
2

= ∥T (z)∥∥b∥ ≤ M∥z∥∥b∥.

Cauchy-Schwarz inequality implies that |⟨y, b⟩| = ∥y∥∥b∥, thus we find that

(2.2) ∥x, b∥2 = ∥y + z∥2∥b∥2 − |⟨y + z, b⟩|2

= (∥y∥2 + ∥z∥2)∥b∥2 − |⟨y, b⟩|2

= (∥y∥2 + ∥z∥2)∥b∥2 − ∥y∥2∥b∥2 = ∥z∥2∥b∥2.

By (2.1) and (2.2), we get the desired result. �

Proposition 2.5. Let ⟨., .|.⟩ be the standard 2-inner product on the Hilbert space H, b ∈ H

and T : (H, ⟨., .|.⟩) → (H, ⟨., .|.⟩) be a b-bounded linear operator in which invariants L⊥
b , then

T is a bounded linear operator on L⊥
b .

Proof. First suppose that range(T ) * Lb. Let x ∈ L⊥
b . By virtue of the fact that T invariants

L⊥
b and also definition of standard 2-inner product we deduce

∥T (x)∥2∥b∥2 = ∥T (x)∥2∥b∥2 − |⟨T (x), b⟩|2 = ∥T (x), b∥2

≤ ∥T∥2b∥x, b∥2 = ∥T∥2b(∥x∥2∥b∥2 − |⟨x, b⟩|2)

= ∥T∥2b∥x∥2∥b∥2.
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Whence ∥T (x)∥ ≤ ∥T∥b∥x∥, for each x ∈ L⊥
b and so T |L⊥

b
is bounded. Now if range(T ) ⊆ Lb,

then range(T |L⊥
b
) ⊆ Lb ∩ L⊥

b = {0}. It forces that T |L⊥
b
= 0. �

Let X be a b-Hilbert space. As Remark 1.3, denote by Mb, the algebraic complement of

Lb in X and identifying Mb by X/Lb. Also let Xb be the completion of the inner product

space Mb. Let T ∈ Bb(X ), define the map Tb : Xb → Xb by setting Tb(z) := lim
n→∞

T (xn)+Lb,

where z = lim
n→∞

xn + Lb ∈ Xb. We observe that Tb is a well-defined linear operator. Clearly

Tb = 0, if range(T ) ⊆ Lb. Otherwise, the inequality

∥(T (xn) + Lb)− (T (xm) + Lb)∥b ≤ ∥T∥b∥(xn + Lb)− (xm + Lb)∥b

implies that the sequence {T (xn) + Lb} is Cauchy and so convergent in Xb.

It is rutin to verify that if T and S are in Bb(X ) and α is any scalar in k, then (αT + S)b =

αTb + Sb and (TS)b = TbSb.

According to Remark 1.3, one obtains that z = ( lim
m→∞

∥.,b∥xm)+Lb, where z = lim
n→∞

∥.∥bxn+Lb ∈
Xb. By virtue of that fact we get the following result.

Proposition 2.6. Let X be a b-Hilbert space and T be a b-bounded linear operator on X ,

then Tb is a bounded linear operator on the Hilbert space Xb and moreover ∥Tb∥ = ∥T∥b.

P. K. Harikrishnan et al., [9] proved a version of Riesz representation theorem in framework

of b-Hilbert spaces. By a slightly modification in the proof of [9, Theorem 3.5] we see that

this theorem holds for a b-bounded linear functional defined on a b-Hilbert space.

Proposition 2.7. Let X be a b-Hilbert space and f be a b-bounded linear functional on

X . Then there exists a unique y ∈ X up to b-congruent such that f(x) = ⟨x, y|b⟩ and

∥f∥b = ∥y, b∥.

Definition 2.8. Let X be a b-Hilbert space. A complex valued function B on X × X is

called a conjugate-bilinear functional, if it is linear in the first variable and conjugate-linear

in the second. Furthermore, it is called b-bounded, if B(X × Lb) = B(Lb × X ) = B(Lb ×
Lb) = {0} and there is a nonnegative real number M such that |B(x, y)| ≤ M∥x, b∥∥y, b∥
for all x, y ∈ X . We denote by ∥B∥b the infimum of such M . It is easy to verify that

∥B∥b = sup{|B(x, y)| : x, y ∈ X , ∥x, b∥ ≤ 1, ∥y, b∥ ≤ 1}. Trivially ∥.∥b defines a norm

on the set of b-bounded conjugate-bilinear functionals on X . Assume S ∈ Bb(X ), define

BS(x, y) := ⟨S(x), y|b⟩ for each x, y ∈ X . It is easy to verify that BS is a b-bounded

conjugate-bilinear functional on X and ∥BS∥b = ∥S∥b.
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Now we are in a position to investigate existence of an adjoint ,which is named b-adjoint,

for a b-bounded linear operator defined on a b-Hilbert space. Indeed, we will show that if X
is a b-Hilbert space and T ∈ Bb(X ), then there exists a unique T ∗ ∈ Bb(X ) up to b-congruent

in which ⟨T (x), y|b⟩ = ⟨x, T ∗(y)|b⟩ for each x, y ∈ X . We use a similar method applied in [11,

pp. 98-101] for Hilbert spaces in order to obtain a b-adjoint for a b-bounded linear operator

in a b-Hilbert space.

Let X be a b-Hilbert space. Consider equivalence relation ∼ on X , in which x ∼ y, if

x, y ∈ Lb and x ∼ x, if x ∈ X − Lb. In this case equivalence class X̃ is {Lb, x̃ = {x} : x ∈
X − Lb}. We observe that (X̃ , ∥.∥̃) is a normed space, where

x̃+ ỹ = x̃+ y,

x̃+ Lb = Lb + x̃ = x̃, Lb + Lb = Lb,

αx̃ = α̃x, αLb = Lb,

∥Lb∥̃ = 0 and ∥x̃∥̃ = ∥x, b∥, for each x, y ∈ X − Lb and α ∈ k. Define J̃ : X̃ → (X ∗)b

by J̃(Lb) = 0 and if x ∈ X − Lb, then J̃(x̃) = Jx, where Jx(y) = ⟨y, x, b⟩ for each y ∈ X .

It is easily seen that, J̃ is a surjective isometric conjugate linear operator. Assume that

V : X̃ → X defined by V (Lb) = 0 and V (x̃) = x for each x ∈ X − Lb, clearly V is a linear

operator and ∥V ∥b = sup{∥V (x̃), b∥ : ∥x̃∥̃ ≤ 1} ≤ 1.

Let B be a b-bounded conjugate-bilinear functional on X , U : X → (X ∗)b be defined by

(Ux)(y) := B(x, y). Then U is a b-bounded conjugate linear operator and by Proposition

2.7, for each x ∈ X , there exists a unique z ∈ X up to b-congruent in which Ux = ϕz, where

ϕz(y) = ⟨y, z|b⟩. Set S := V J̃−1U , it is a b-bounded linear operator on X . Indeed we have

∥V J̃−1Ux, b∥ ≤ ∥V ∥b∥J̃−1Ux∥̃ = ∥V ∥b∥Ux∥ ≤ sup{|Ux(y)| : ∥y, b∥ ≤ 1} < ∥B∥b∥x, b∥,

for each x ∈ X . Now if BS(x, y) = ⟨S(x), y|b⟩, then BS is a b-bounded conjugate-bilinear

functional on X×X , ∥BS∥b = ∥S∥b and furthermore, BS(x, y) = ⟨y, S(x)|b⟩ = ⟨y, V J̃−1Ux|b⟩ =
⟨y, z|b⟩ = ϕz(y) = Ux(y) = B(x, y). Trivially if x or y are in Lb, then B(x, y) = BS(x, y) = 0.

Hence every b-bounded conjugate bilinear functional is of the form BS for some S ∈ Bb(X ).

Theorem 2.9. Let T be a b-bounded linear operator on a b-Hilbert space X , then there exists

a unique b-bounded linear operator T ∗ ∈ Bb(X ) up to b-congruent such that ⟨T (x), y|b⟩ =

⟨x, T ∗(y)|b⟩ for each x, y ∈ X . In addition, if S and S ′ are two b-adjoints of T , then Sb = S ′
b.
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Proof. Define B(x, y) = ⟨x, T (y)|b⟩. It is easily verified that B is a b-bounded conjugate-

bilinear functional on X × X . So

B(x, y) = BS(x, y) = ⟨S(x), y|b⟩,

for some b-bounded linear operator S on X . Put T ∗ := S, then T ∗ is a b-adjoint of T .

Using the same reasoning as [11, Theorem 2.4.1] b-adjoint of T is unique up to b-congruent.

It remains to show that Sb = S ′
b, for b-adjoints S and S ′ of T . For, let z1, z2 ∈ Xb, then z1 =

lim
n→∞

xn + Lb and z2 = lim
m→∞

ym + Lb for some sequences {xn} and {ym} in X . Since S = S ′

up to b-congruent, so for each n ∈ N, there is a scalar µn in which S(xn) = S ′(xn) + µnb.

Thus we have

⟨Sb(z1), z2⟩b = ⟨Sb( lim
n→∞

xn + Lb), lim
m→∞

ym + Lb⟩b

= ⟨ lim
n→∞

S(xn) + Lb, lim
m→∞

ym + Lb⟩b

= lim
n→∞

lim
m→∞

⟨S ′(xn) + µnb, ym|b⟩

= lim
n→∞

lim
m→∞

⟨S ′(xn) + Lb, ym + Lb⟩b

= ⟨S ′
b(z1), z2⟩b.

It follows that Sb = S ′
b. �

As an immediate consequence of the above theorem we have T = T ∗∗ up to b-congruent.

Let X be a b-Hilbert space and T ∈ Bb(X ), then T is called b-selfadjoint if T = T ∗ up

to b-congruent or equivalently ⟨T (x), y|b⟩ = ⟨x, T (y)|b⟩ for each x, y ∈ X and it is called

b-unitary, if TT ∗ = T ∗T = I (identity operator on X ) up to b-congruent. Note that if T is

b-unitary, then range(T ) * Lb.

Now we are ready to establishing b-numerical range (radius) for a b-bounded linear operator

in b-Hilbert spaces. To extend a well-known result in Hilbert spaces to b-Hilbert spaces.

Definition 2.10. Let T : X → X be a b-bounded linear operator on a b-Hilbert space X .

Then b-numerical range of T which is denoted by Wb(T ) is {⟨T (x), x|b⟩ : x ∈ X , ∥x, b∥ = 1}.
Also, b-numerical radius of T which is denoted by ωb(T ) is sup{|⟨T (x), x|b⟩| : x ∈ X , ∥x, b∥ =

1}.

A remarkable fact about b-numerical range (radius) is its close relation with numerical

range (radius) in the usual sense. Indeed, we have Wb(T ) = W (Tb) and ωb(T ) = ω(Tb).
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By virtue of this fact every question about b-numerical range (radius) in a b-Hilbert space

can be solved as a question about numerical range (radius) in a Hilbert space.

It is easy to verify that ωb(.) is a semi-norm on Bb(X ). Furthermore, using Proposition 2.6

and [7, Theorem 1.3.1], we have ωb(T ) ≤ ∥T∥b ≤ 2ωb(T ), for each T ∈ Bb(X ).

In the following we extend [7, Theorem 1.2.2] in the framework of b-Hilbert spaces.

Theorem 2.11. Let T be a b-bounded linear operator on a b-Hilbert space X . Then T is

b-selfadjoint if and only if Wb(T ) ⊆ R.

Proof. Let z1 = lim
n→∞

xn + Lb and z2 = lim
n→∞

yn + Lb be arbitrary elements in Xb. We get

⟨z1, (Tb)
∗(z2)⟩b = ⟨Tb( lim

n→∞
xn + Lb), lim

n→∞
yn + Lb⟩b

= ⟨
∥.,b∥
lim
n→∞

T (xn),
∥.,b∥
lim
n→∞

yn|b⟩

= ⟨
∥.,b∥
lim
n→∞

xn, T
∗(

∥.,b∥
lim
n→∞

yn)|b⟩

= ⟨(
∥.,b∥
lim
n→∞

xn) + Lb, (
∥.,b∥
lim
n→∞

T ∗(yn)) + Lb⟩b

= ⟨ lim
n→∞

xn + Lb, (T
∗)b( lim

n→∞
yn + Lb)⟩b

= ⟨z1, (T ∗)b(z2)⟩b.

Therefore (Tb)
∗ = (T ∗)b. Now if T is b-selfadjoint, then (T ∗)b = Tb and so (Tb)

∗ = Tb.

Applying [7, Theorem 1.2.2] we deduceWb(T ) = W (Tb) ⊆ R. Conversely, ifWb(T ) ⊆ R, then
Tb is a selfadjoint linear operator on the Hilbert space Xb. That is, (Tb)

∗ = Tb. Consequently

for each x, y ∈ X , ⟨T (x), y|b⟩ = ⟨Tb(x+Lb), y+Lb⟩b = ⟨x+Lb, T
∗
b (y+Lb)⟩b = ⟨x+Lb, Tb(y+

Lb)⟩b = ⟨x, T (y)|b⟩. Hence T is b-selfadjoint and so the proof is completed. �

In the light of the above discussions we have the following statement.

Suppose that U and I are b-unitary and identity operators on a b-Hilbert space X , respec-

tively and T ∈ Bb(X ). Then we have

(i) Wb(α + βT ) = α + βWb(T ), for each α and β in k.
(ii) Wb(T

∗) = {λ : λ ∈ Wb(T )}.
(iii) Wb(U

∗TU) = Wb(T ).



10 MAHNAZ KHANEHGIR AND FIROOZEH HASANVAND

References

[1] A. Arefijamaal and Gh. Sadeghi, Frames in 2-inner product spaces, Iranian J. Math. Sci. and informatics,

8(2013), no. 2, 123–130.

[2] R. Bahatia, Matrix analysis, Grad. Texts in Math. 169, Springer-Verlag, New York, 1997.

[3] Y. J. Cho, P. C. S. Lin, S. S. Kim and A. Misiak, Theory of 2-inner product spaces, Nova Science

Publishers, Inc. New York, 2001.

[4] S. S. Dragomir, Some numerical radius inequalities for power series of operators in Hilbert spaces, J.

Inequal. Appl. 298(2013) 1–12.

[5] S. Gähler, Linear 2-normierte Räume, Math. Nachr. 28(1964) 1–43.
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