ON BOUNDED LINEAR OPERATORS IN b-HILBERT SPACES AND THEIR NUMERICAL RANGES

MAHNAZ KHANEHGIR AND FIROOZEH HASANVAND

Abstract

In this paper, we introduce the notions of b-bounded linear operator, b-numerical range and b-numerical radius in a b-Hilbert space and describe some of their properties. Then we will show that this new numerical range (radius) can be considered as a usual numerical range (radius) in a Hilbert space, so it shares many useful properties with numerical range (radius).

1. Introduction and Preliminaries

Quadratic forms and their applications appear in many parts of mathematics and the sciences. A natural extension of these ideas in finite- and infinite-dimensional spaces leads us to the numerical range [7]. The subject has been studied by great mathematicians like K. E. Gustafson, D. K. M. Rao, R. Bahatia, F. Kittaneh, S. S. Dragomir, M. S. Moslehian and others (cf. e.g. $[2,4,7,8,10,12]$ and also to the references cited therein), and they have contributed a lot for the extension of this branch of mathematics.

The concept of linear 2-normed spaces was investigated by S. Gähler in 1964 [5], and has been developed extensively in different subjects by many authors $[6,13,15,16]$. A concept which is closely related to 2-normed space is 2 -inner product space which has been intensively studied by many mathematicians in the last three decades. A systematic presentation of the recent results related to the theory of 2-inner product spaces as well as an extensive list of the related references can be found in the book [3].

In the following we provide some notations, definitions and auxiliary facts which will be used later in this paper.

[^0]Definition 1.1. Let \mathcal{X} be a linear space of dimension greater than 1 over the field \mathbb{k}, where \mathbb{k} is the real or complex numbers field. Suppose that $\langle., \mid$.$\rangle is a \mathbb{k}$-valued function defined on $\mathcal{X} \times \mathcal{X} \times \mathcal{X}$ satisfying the following conditions:
(I1) $\langle x, x \mid z\rangle \geq 0$ and $\langle x, x \mid z\rangle=0$ if and only if x and z are linearly dependent,
(I2) $\langle x, x \mid z\rangle=\langle z, z \mid x\rangle$,
(I3) $\langle x, y \mid z\rangle=\overline{\langle y, x \mid z\rangle}$,
(I4) $\langle\alpha x, y \mid z\rangle=\alpha\langle x, y \mid z\rangle$ for all $\alpha \in \mathbb{k}$,
(I5) $\left\langle x_{1}+x_{2}, y \mid z\right\rangle=\left\langle x_{1}, y \mid z\right\rangle+\left\langle x_{2}, y \mid z\right\rangle$.
Then $\langle., . \mid$.$\rangle is called a 2$-inner product on \mathcal{X} and $(\mathcal{X},\langle., . \mid\rangle$.$) is called a 2$-inner product space (or 2-pre Hilbert space).

From the definition of 2-inner product it is easy to verify the following assertions:
(i) $\langle 0, y \mid z\rangle=\langle x, 0 \mid z\rangle=\langle x, y \mid 0\rangle=0$.
(ii) $\langle x, \alpha y \mid z\rangle=\bar{\alpha}\langle x, y \mid z\rangle$.
(iii) $\langle x, y \mid \alpha z\rangle=|\alpha|^{2}\langle x, y \mid z\rangle$, for all $x, y, z \in \mathcal{X}$ and $\alpha \in \mathbb{k}$.

Using the above properties, we can prove the Cauchy-Schwarz inequality

$$
|\langle x, y \mid z\rangle|^{2} \leq\langle x, x \mid z\rangle\langle y, y \mid z\rangle
$$

Example 1.2. (see [1, Example 1.1]) If $(\mathcal{X},\langle.,\rangle$.$) is an inner product space, then the standard$ 2 -inner product $\langle., . \mid$.$\rangle is defined on \mathcal{X}$ by

$$
\langle x, y \mid z\rangle=\left|\begin{array}{ll}
\langle x, y\rangle & \langle x, z\rangle \\
\langle z, y\rangle & \langle z, z\rangle
\end{array}\right|=\langle x, y\rangle\langle z, z\rangle-\langle x, z\rangle\langle z, y\rangle,
$$

for all $x, y, z \in \mathcal{X}$.
In any 2 -inner product space $(\mathcal{X},\langle., . \mid\rangle$.$) we can define a function \|.,$.$\| on \mathcal{X} \times \mathcal{X}$ by

$$
\text { (1.1) } \quad\|x, z\|=\langle x, x \mid z\rangle^{\frac{1}{2}}
$$

for all $x, z \in \mathcal{X}$. It is easy to see that, this functions satisfies the following conditions:
(N1) $\|x, z\| \geq 0$ and $\|x, z\|=0$ if and only if x and z are linearly dependent,
(N2) $\|x, z\|=\|z, x\|$,
(N3) $\|\alpha x, z\|=|\alpha|\|x, z\|$ for all $\alpha \in \mathbb{k}$,
(N4) $\left\|x_{1}+x_{2}, z\right\| \leq\left\|x_{1}, z\right\|+\left\|x_{2}, z\right\|$.
Any function $\|.,$.$\| defined on \mathcal{X} \times \mathcal{X}$ and satisfying the conditions (N1)-(N4) is called a

2-norm on \mathcal{X} and $(\mathcal{X},\|.,\|$.$) is called a linear 2-normed space. Whenever a 2-inner product$ space $(\mathcal{X},\langle., . \mid\rangle$.$) is given, we consider it as a linear 2-normed space (\mathcal{X},\|.,\|$.$) with the norm$ defined by (1.1).

Let \mathcal{X} be a 2-inner product space. A sequence $\left\{x_{n}\right\}$ of \mathcal{X} is said to be convergent if there exists an element $x \in \mathcal{X}$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x, z\right\|=0$, for all $z \in \mathcal{X}$. Similarly, we can define a Cauchy sequence in \mathcal{X}. A 2-inner product space \mathcal{X} is called a 2 -Hilbert space if it is complete. That is, every Cauchy sequence in \mathcal{X} is convergent in this space [13]. Clearly, the limit of any convergent sequence is unique. Now suppose that b is a nonzero fixed vector in \mathcal{X} and take $z=b$, then definition of Cauchy, convergent and 2-Hilbert space change to b-Cauchy, b-convergent and b-Hilbert space [9]. If a sequence $\left\{x_{n}\right\}$ is b-convergent to an element of b-Hilbert space \mathcal{X} say x, then we denote it by $\lim _{n \rightarrow \infty}\|, b\| x_{n}=x$.
It is easily verified that in any b-Hilbert space \mathcal{X}, the mapping $\langle., . \mid b\rangle$ is sequentially continuous with respect to semi-norm $\|., b\|$.

Remark 1.3. (see [1, Pages 127-128]) Assume that ($\mathcal{X},\langle., . \mid\rangle$.$) is a 2-Hilbert space and L_{\xi}$ the subspace generated with ξ for a fix element ξ in \mathcal{X}. Denote by \mathcal{M}_{ξ} the algebraic complement of L_{ξ} in \mathcal{X}. So $L_{\xi} \oplus \mathcal{M}_{\xi}=\mathcal{X}$. We first define the inner product $\langle.,\rangle_{\xi}$ on \mathcal{X} as following:

$$
\langle x, z\rangle_{\xi}=\langle x, z \mid \xi\rangle .
$$

A straightforward calculations shows that $\langle., .\rangle_{\xi}$ is a semi-inner product on \mathcal{X}. It is wellknown that this semi-inner product induces an inner product on the quotient space \mathcal{X} / L_{ξ} as

$$
\left\langle x+L_{\xi}, z+L_{\xi}\right\rangle_{\xi}=\langle x, z\rangle_{\xi}, \quad(x, z \in \mathcal{X}) .
$$

By identifying \mathcal{X} / L_{ξ} with \mathcal{M}_{ξ} in an obvious way, we obtain an inner product on \mathcal{M}_{ξ}. Define

$$
\|x\|_{\xi}=\sqrt{\langle x, x\rangle_{\xi}} \quad\left(x \in \mathcal{M}_{\xi}\right)
$$

Then $\left(\mathcal{M}_{\xi},\|\cdot\|_{\xi}\right)$ is a normed space. Let \mathcal{X}_{ξ} be the completion of the inner product space \mathcal{M}_{ξ}. For each $b \in \mathcal{X}$, we denote by L_{b} the subspace generated by b. Let $x_{1}, x_{2} \in \mathcal{X}$, then x_{1} is said to b-congruent to x_{2}, if $x_{1}-x_{2} \in L_{b}$.

In the present work, we shall introduce the concept of b-bounded linear operator and describe some fundamental properties of it. Then we establish b-numerical range (radius) for
b-bounded linear operators. This numerical range (radius) can be considered as a usual numerical range (radius) in a Hilbert space, so it shares many useful properties with numerical range (radius).

Throughout this paper, unless otherwise specified, \mathcal{X}, H and L_{b}^{\perp} denote b-Hilbert space, Hilbert space with the inner product $\langle.,$.$\rangle chosen to be linear in the first entry, and the$ orthogonal complement of L_{b} in H, respectively.

2. Main Result

Definition 2.1. Let \mathcal{X} be a b-Hilbert space. A linear operator $T: \mathcal{X} \rightarrow \mathcal{X}$ is called b bounded if T invariants L_{b} and there is a non-negative real number M such that $\|T(x), b\| \leq$ $M\|x, b\|$ for all $x \in \mathcal{X}$. We define $\|T\|_{b}$ infimum of such M. Obviously,

$$
\|T\|_{b}=\sup \{\|T(x), b\|:\|x, b\| \leq 1\}=\sup \{\|T(x), b\|:\|x, b\|=1\}
$$

We denote the set of all b-bounded linear operators on the b-Hilbert space \mathcal{X}, by $B_{b}(\mathcal{X})$. It is not hard to see that if $T \in B_{b}(\mathcal{X})$, then it (sequentially) continuous.

Let T and T^{\prime} be b-bounded linear operators on the b-Hilbert space \mathcal{X}. They are called equal up to b-congruent if range $\left(T-T^{\prime}\right) \subseteq L_{b}$. Due to the fact $\left(B_{b}(\mathcal{X}),\|\cdot\|_{b}\right)$ is a semi-normed space.
Similarly a linear functional $f: \mathcal{X} \rightarrow \mathbb{C}$ is called b-bounded if $f\left(L_{b}\right)=\{0\}$ and there is a non-negative real number M such that $|f(x)| \leq M\|x, b\|$ for all $x \in \mathcal{X}$. We define $\|f\|_{b}$ infimum of such M. We observe that $\|f\|_{b}=\sup \{|f(x)|:\|x, b\| \leq 1\}$ and it defines a norm on the set of all b-bounded linear functionals on \mathcal{X} which is denoted by $\left(\mathcal{X}^{*}\right)_{b}$.

Example 2.2. Let $\mathcal{X}=l^{2}$ together with the standard 2 -inner product. Then $\mathcal{X}=l^{2}$ is a $(1,0,0, \ldots)$-Hilbert space. Assume that $T: \mathcal{X} \rightarrow \mathcal{X}$ is a map which is defined by $T\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1}, \frac{a_{2}}{2}, \frac{a_{3}}{3}, \ldots\right)$. It is readily verified that T is $(1,0,0, \ldots)$-bounded linear operator. Indeed, $\left\|T\left(\left(a_{1}, a_{2}, \ldots\right)\right),(1,0,0, \ldots)\right\|^{2}=\sum_{n=2}^{\infty}\left(\frac{\left|a_{n}\right|}{n}\right)^{2} \leq \sum_{n=2}^{\infty}\left|a_{n}\right|^{2}=\left\|\left(a_{1}, a_{2}, \ldots\right),(1,0,0, \ldots)\right\|^{2}$.

Example 2.3. Let $L^{2}([-\pi, \pi])=\left\{f:[-\pi, \pi] \rightarrow \mathbb{R}, \int_{-\pi}^{\pi}|f(x)|^{2} d x<\infty\right\}$ and let $\mathcal{X}=\{f \in$ $\left.L^{2}([-\pi, \pi]): f^{(k)} \in L^{2}([-\pi, \pi]), k=1,2, \ldots\right\}$. Then \mathcal{X} with the standard 2 -inner product is an e^{x}-Hilbert space. Define the operator $T: \mathcal{X} \rightarrow \mathcal{X}$ by $T(f)=f^{\prime}$. An easy computation shows that T invariants $L_{e^{x}}$ but it is not e^{x}-bounded. Since $\left\|T(\sin n x), e^{x}\right\|^{2}=n^{2}\left(\frac{\pi}{2}\left(e^{2 \pi}-\right.\right.$
$\left.\left.e^{-2 \pi}\right)-\frac{\left(e^{\pi}-e^{-\pi}\right)^{2}}{\left(n+n^{3}\right)^{2}}\right)$ and $\left\|\sin (n x), e^{x}\right\|^{2}=\frac{\pi}{2}\left(e^{2 \pi}-e^{-2 \pi}\right)-\frac{n^{2}\left(e^{\pi}-e^{-\pi}\right)^{2}}{\left(1+n^{2}\right)^{2}}$, then $\left\|T(\sin n x), e^{x}\right\|$ goes to infinity as $n \rightarrow \infty$.

Proposition 2.4. Let $\langle., . \mid$.$\rangle be the standard 2-inner product on the Hilbert space H, b \in H$ and $T \in B(H)$ in which T reduces L_{b}, then $T:(H,\langle., . \mid\rangle.) \rightarrow(H,\langle., . \mid\rangle$.$) is a b-bounded linear$ operator.

Proof. Clearly if range $(T) \subseteq L_{b}$, then $\|T\|_{b}=0$. Otherwise, since $T \in B(H)$, so there is a constant $M>0$ such that $\|T(x)\| \leq M\|x\|$ for all $x \in H$. On the other hand, we have $H=L_{b} \oplus L_{b}^{\perp}$, therefore every element x of H can be written uniquely as $y+z$ for some $y \in L_{b}$ and $z \in L_{b}^{\perp}$. Now since T reduces L_{b}, then by the definition of standard 2-inner product it follows that

$$
\begin{align*}
\|T(x), b\| & =\|T(y+z), b\| \leq\|T(y), b\|+\|T(z), b\| \tag{2.1}\\
& =\|T(z), b\|=\left(\|T(z), b\|^{2}\right)^{\frac{1}{2}}=\left(\|T(z)\|^{2}\|b\|^{2}-|\langle T(z), b\rangle|^{2}\right)^{\frac{1}{2}} \\
& =\|T(z)\|\|b\| \leq M\|z\|\|b\| .
\end{align*}
$$

Cauchy-Schwarz inequality implies that $|\langle y, b\rangle|=\|y\|\|b\|$, thus we find that

$$
\begin{align*}
\|x, b\|^{2} & =\|y+z\|^{2}\|b\|^{2}-|\langle y+z, b\rangle|^{2} \tag{2.2}\\
& =\left(\|y\|^{2}+\|z\|^{2}\right)\|b\|^{2}-|\langle y, b\rangle|^{2} \\
& =\left(\|y\|^{2}+\|z\|^{2}\right)\|b\|^{2}-\|y\|^{2}\|b\|^{2}=\|z\|^{2}\|b\|^{2}
\end{align*}
$$

By (2.1) and (2.2), we get the desired result.
Proposition 2.5. Let $\langle., . \mid$.$\rangle be the standard 2-inner product on the Hilbert space H, b \in H$ and $T:(H,\langle.| .,| \rangle) \rightarrow(H,\langle., . \mid\rangle$.$) be a b-bounded linear operator in which invariants L_{b}^{\perp}$, then T is a bounded linear operator on L_{b}^{\perp}.

Proof. First suppose that range $(T) \nsubseteq L_{b}$. Let $x \in L_{b}^{\perp}$. By virtue of the fact that T invariants L_{b}^{\perp} and also definition of standard 2-inner product we deduce

$$
\begin{aligned}
\|T(x)\|^{2}\|b\|^{2} & =\|T(x)\|^{2}\|b\|^{2}-|\langle T(x), b\rangle|^{2}=\|T(x), b\|^{2} \\
& \leq\|T\|_{b}^{2}\|x, b\|^{2}=\|T\|_{b}^{2}\left(\|x\|^{2}\|b\|^{2}-|\langle x, b\rangle|^{2}\right) \\
& =\|T\|_{b}^{2}\|x\|^{2}\|b\|^{2} .
\end{aligned}
$$

Whence $\|T(x)\| \leq\|T\|_{b}\|x\|$, for each $x \in L_{b}^{\perp}$ and so $\left.T\right|_{L_{b}^{\perp}}$ is bounded. Now if range $(T) \subseteq L_{b}$, then range $\left(\left.T\right|_{L_{b}^{\perp}}\right) \subseteq L_{b} \cap L_{b}^{\perp}=\{0\}$. It forces that $\left.T\right|_{L_{b}^{\perp}}=0$.

Let \mathcal{X} be a b-Hilbert space. As Remark 1.3, denote by \mathcal{M}_{b}, the algebraic complement of L_{b} in \mathcal{X} and identifying \mathcal{M}_{b} by \mathcal{X} / L_{b}. Also let \mathcal{X}_{b} be the completion of the inner product space \mathcal{M}_{b}. Let $T \in B_{b}(\mathcal{X})$, define the map $T_{b}: \mathcal{X}_{b} \rightarrow \mathcal{X}_{b}$ by setting $T_{b}(z):=\lim _{n \rightarrow \infty} T\left(x_{n}\right)+L_{b}$, where $z=\lim _{n \rightarrow \infty} x_{n}+L_{b} \in \mathcal{X}_{b}$. We observe that T_{b} is a well-defined linear operator. Clearly $T_{b}=0$, if range $(T) \subseteq L_{b}$. Otherwise, the inequality

$$
\left\|\left(T\left(x_{n}\right)+L_{b}\right)-\left(T\left(x_{m}\right)+L_{b}\right)\right\|_{b} \leq\|T\|_{b}\left\|\left(x_{n}+L_{b}\right)-\left(x_{m}+L_{b}\right)\right\|_{b}
$$

implies that the sequence $\left\{T\left(x_{n}\right)+L_{b}\right\}$ is Cauchy and so convergent in \mathcal{X}_{b}.
It is rutin to verify that if T and S are in $B_{b}(\mathcal{X})$ and α is any scalar in \mathbb{k}, then $(\alpha T+S)_{b}=$ $\alpha T_{b}+S_{b}$ and $(T S)_{b}=T_{b} S_{b}$.
According to Remark 1.3, one obtains that $z=\left(\lim _{m \rightarrow \infty}{ }^{\|., b\|} x_{m}\right)+L_{b}$, where $z=\lim _{n \rightarrow \infty}{ }^{\|\cdot\| \|_{b}} x_{n}+L_{b} \in$ \mathcal{X}_{b}. By virtue of that fact we get the following result.

Proposition 2.6. Let \mathcal{X} be a b-Hilbert space and T be a b-bounded linear operator on \mathcal{X}, then T_{b} is a bounded linear operator on the Hilbert space \mathcal{X}_{b} and moreover $\left\|T_{b}\right\|=\|T\|_{b}$.
P. K. Harikrishnan et al., [9] proved a version of Riesz representation theorem in framework of b-Hilbert spaces. By a slightly modification in the proof of [9, Theorem 3.5] we see that this theorem holds for a b-bounded linear functional defined on a b-Hilbert space.

Proposition 2.7. Let \mathcal{X} be a b-Hilbert space and f be a b-bounded linear functional on \mathcal{X}. Then there exists a unique $y \in \mathcal{X}$ up to b-congruent such that $f(x)=\langle x, y \mid b\rangle$ and $\|f\|_{b}=\|y, b\|$.

Definition 2.8. Let \mathcal{X} be a b-Hilbert space. A complex valued function B on $\mathcal{X} \times \mathcal{X}$ is called a conjugate-bilinear functional, if it is linear in the first variable and conjugate-linear in the second. Furthermore, it is called b-bounded, if $B\left(\mathcal{X} \times L_{b}\right)=B\left(L_{b} \times \mathcal{X}\right)=B\left(L_{b} \times\right.$ $\left.L_{b}\right)=\{0\}$ and there is a nonnegative real number M such that $|B(x, y)| \leq M\|x, b\|\|y, b\|$ for all $x, y \in \mathcal{X}$. We denote by $\|B\|_{b}$ the infimum of such M. It is easy to verify that $\|B\|_{b}=\sup \{|B(x, y)|: x, y \in \mathcal{X},\|x, b\| \leq 1,\|y, b\| \leq 1\}$. Trivially $\|\cdot\|_{b}$ defines a norm on the set of b-bounded conjugate-bilinear functionals on \mathcal{X}. Assume $S \in B_{b}(\mathcal{X})$, define $B_{S}(x, y):=\langle S(x), y \mid b\rangle$ for each $x, y \in \mathcal{X}$. It is easy to verify that B_{S} is a b-bounded conjugate-bilinear functional on \mathcal{X} and $\left\|B_{S}\right\|_{b}=\|S\|_{b}$.

Now we are in a position to investigate existence of an adjoint, which is named b-adjoint, for a b-bounded linear operator defined on a b-Hilbert space. Indeed, we will show that if \mathcal{X} is a b-Hilbert space and $T \in B_{b}(\mathcal{X})$, then there exists a unique $T^{*} \in B_{b}(\mathcal{X})$ up to b-congruent in which $\langle T(x), y \mid b\rangle=\left\langle x, T^{*}(y) \mid b\right\rangle$ for each $x, y \in \mathcal{X}$. We use a similar method applied in [11, pp. 98-101] for Hilbert spaces in order to obtain a b-adjoint for a b-bounded linear operator in a b-Hilbert space.

Let \mathcal{X} be a b-Hilbert space. Consider equivalence relation \sim on \mathcal{X}, in which $x \sim y$, if $x, y \in L_{b}$ and $x \sim x$, if $x \in \mathcal{X}-L_{b}$. In this case equivalence class $\tilde{\mathcal{X}}$ is $\left\{L_{b}, \tilde{x}=\{x\}: x \in\right.$ $\left.\mathcal{X}-L_{b}\right\}$. We observe that $(\tilde{\mathcal{X}}, \| \cdot \tilde{\|})$ is a normed space, where

$$
\begin{aligned}
\tilde{x}+\tilde{y} & =\widetilde{x+y} \\
\tilde{x}+L_{b} & =L_{b}+\tilde{x}=\tilde{x}, \quad L_{b}+L_{b}=L_{b} \\
\alpha \tilde{x} & =\widetilde{\alpha x}, \quad \alpha L_{b}=L_{b},
\end{aligned}
$$

$\| L_{b} \tilde{\|}=0$ and $\|\tilde{x} \tilde{\|}=\| x, b \|$, for each $x, y \in \mathcal{X}-L_{b}$ and $\alpha \in \mathbb{k}$. Define $\tilde{J}: \tilde{\mathcal{X}} \rightarrow\left(\mathcal{X}^{*}\right)_{b}$ by $\tilde{J}\left(L_{b}\right)=0$ and if $x \in \mathcal{X}-L_{b}$, then $\tilde{J}(\tilde{x})=J_{x}$, where $J_{x}(y)=\langle y, x, b\rangle$ for each $y \in \mathcal{X}$. It is easily seen that, \tilde{J} is a surjective isometric conjugate linear operator. Assume that $V: \tilde{\mathcal{X}} \rightarrow \mathcal{X}$ defined by $V\left(L_{b}\right)=0$ and $V(\tilde{x})=x$ for each $x \in \mathcal{X}-L_{b}$, clearly V is a linear operator and $\|V\|_{b}=\sup \{\|V(\tilde{x}), b\|:\|\tilde{x}\| \leq 1\} \leq 1$.

Let B be a b-bounded conjugate-bilinear functional on $\mathcal{X}, U: \mathcal{X} \rightarrow\left(\mathcal{X}^{*}\right)_{b}$ be defined by $(U x)(y):=\overline{B(x, y)}$. Then U is a b-bounded conjugate linear operator and by Proposition 2.7, for each $x \in \mathcal{X}$, there exists a unique $z \in \mathcal{X}$ up to b-congruent in which $U x=\phi_{z}$, where $\phi_{z}(y)=\langle y, z \mid b\rangle$. Set $S:=V \tilde{J}^{-1} U$, it is a b-bounded linear operator on \mathcal{X}. Indeed we have

$$
\left\|V \tilde{J}^{-1} U x, b\right\| \leq\|V\|_{b}\left\|\tilde{J}^{-1} U x \tilde{\|}=\right\| V\left\|_{b}\right\| U x\|\leq \sup \{|U x(y)|:\|y, b\| \leq 1\}<\| B\left\|_{b}\right\| x, b \|,
$$

for each $x \in \mathcal{X}$. Now if $B_{S}(x, y)=\langle S(x), y \mid b\rangle$, then B_{S} is a b-bounded conjugate-bilinear functional on $\mathcal{X} \times \mathcal{X},\left\|B_{S}\right\|_{b}=\|S\|_{b}$ and furthermore, $B_{S}(x, y)=\overline{\langle y, S(x) \mid b\rangle}=\overline{\left\langle y, V \tilde{J}^{-1} U x \mid b\right\rangle}=$ $\overline{\langle y, z \mid b\rangle}=\overline{\phi_{z}(y)}=\overline{U x(y)}=B(x, y)$. Trivially if x or y are in L_{b}, then $B(x, y)=B_{S}(x, y)=0$. Hence every b-bounded conjugate bilinear functional is of the form B_{S} for some $S \in B_{b}(\mathcal{X})$.

Theorem 2.9. Let T be ab-bounded linear operator on a b-Hilbert space \mathcal{X}, then there exists a unique b-bounded linear operator $T^{*} \in B_{b}(\mathcal{X})$ up to b-congruent such that $\langle T(x), y \mid b\rangle=$ $\left\langle x, T^{*}(y) \mid b\right\rangle$ for each $x, y \in \mathcal{X}$. In addition, if S and S^{\prime} are two b-adjoints of T, then $S_{b}=S_{b}^{\prime}$.

Proof. Define $B(x, y)=\langle x, T(y) \mid b\rangle$. It is easily verified that B is a b-bounded conjugatebilinear functional on $\mathcal{X} \times \mathcal{X}$. So

$$
B(x, y)=B_{S}(x, y)=\langle S(x), y \mid b\rangle
$$

for some b-bounded linear operator S on \mathcal{X}. Put $T^{*}:=S$, then T^{*} is a b-adjoint of T.
Using the same reasoning as [11, Theorem 2.4.1] b-adjoint of T is unique up to b-congruent. It remains to show that $S_{b}=S_{b}^{\prime}$, for b-adjoints S and S^{\prime} of T. For, let $z_{1}, z_{2} \in \mathcal{X}_{b}$, then $z_{1}=$ $\lim _{n \rightarrow \infty} x_{n}+L_{b}$ and $z_{2}=\lim _{m \rightarrow \infty} y_{m}+L_{b}$ for some sequences $\left\{x_{n}\right\}$ and $\left\{y_{m}\right\}$ in \mathcal{X}. Since $S=S^{\prime}$ up to b-congruent, so for each $n \in \mathbb{N}$, there is a scalar μ_{n} in which $S\left(x_{n}\right)=S^{\prime}\left(x_{n}\right)+\mu_{n} b$. Thus we have

$$
\begin{aligned}
\left\langle S_{b}\left(z_{1}\right), z_{2}\right\rangle_{b} & =\left\langle S_{b}\left(\lim _{n \rightarrow \infty} x_{n}+L_{b}\right), \lim _{m \rightarrow \infty} y_{m}+L_{b}\right\rangle_{b} \\
& =\left\langle\lim _{n \rightarrow \infty} S\left(x_{n}\right)+L_{b}, \lim _{m \rightarrow \infty} y_{m}+L_{b}\right\rangle_{b} \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}\left\langle S^{\prime}\left(x_{n}\right)+\mu_{n} b, y_{m} \mid b\right\rangle \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty}\left\langle S^{\prime}\left(x_{n}\right)+L_{b}, y_{m}+L_{b}\right\rangle_{b} \\
& =\left\langle S_{b}^{\prime}\left(z_{1}\right), z_{2}\right\rangle_{b} .
\end{aligned}
$$

It follows that $S_{b}=S_{b}^{\prime}$.
As an immediate consequence of the above theorem we have $T=T^{* *}$ up to b-congruent.
Let \mathcal{X} be a b-Hilbert space and $T \in B_{b}(\mathcal{X})$, then T is called b-selfadjoint if $T=T^{*}$ up to b-congruent or equivalently $\langle T(x), y \mid b\rangle=\langle x, T(y) \mid b\rangle$ for each $x, y \in \mathcal{X}$ and it is called b-unitary, if $T T^{*}=T^{*} T=I$ (identity operator on \mathcal{X}) up to b-congruent. Note that if T is b-unitary, then range $(T) \nsubseteq L_{b}$.

Now we are ready to establishing b-numerical range (radius) for a b-bounded linear operator in b-Hilbert spaces. To extend a well-known result in Hilbert spaces to b-Hilbert spaces.

Definition 2.10. Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a b-bounded linear operator on a b-Hilbert space \mathcal{X}. Then b-numerical range of T which is denoted by $W_{b}(T)$ is $\{\langle T(x), x \mid b\rangle: x \in \mathcal{X},\|x, b\|=1\}$. Also, b-numerical radius of T which is denoted by $\omega_{b}(T)$ is $\sup \{|\langle T(x), x \mid b\rangle|: x \in \mathcal{X},\|x, b\|=$ $1\}$.

A remarkable fact about b-numerical range (radius) is its close relation with numerical range (radius) in the usual sense. Indeed, we have $W_{b}(T)=W\left(T_{b}\right)$ and $\omega_{b}(T)=\omega\left(T_{b}\right)$.

ON BOUNDED LINEAR OPERATORS IN b-HILBERT SPACES AND THEIR NUMERICAL RANGES 9

By virtue of this fact every question about b-numerical range (radius) in a b-Hilbert space can be solved as a question about numerical range (radius) in a Hilbert space.
It is easy to verify that $\omega_{b}($.$) is a semi-norm on B_{b}(\mathcal{X})$. Furthermore, using Proposition 2.6 and [7 , Theorem 1.3.1], we have $\omega_{b}(T) \leq\|T\|_{b} \leq 2 \omega_{b}(T)$, for each $T \in B_{b}(\mathcal{X})$.
In the following we extend [7, Theorem 1.2.2] in the framework of b-Hilbert spaces.
Theorem 2.11. Let T be ab-bounded linear operator on ab-Hilbert space \mathcal{X}. Then T is b-selfadjoint if and only if $W_{b}(T) \subseteq \mathbb{R}$.

Proof. Let $z_{1}=\lim _{n \rightarrow \infty} x_{n}+L_{b}$ and $z_{2}=\lim _{n \rightarrow \infty} y_{n}+L_{b}$ be arbitrary elements in \mathcal{X}_{b}. We get

$$
\begin{aligned}
&\left\langle z_{1},\left(T_{b}\right)^{*}\left(z_{2}\right)\right\rangle_{b}=\left\langle T_{b}\left(\lim _{n \rightarrow \infty} x_{n}+L_{b}\right), \lim _{n \rightarrow \infty} y_{n}+L_{b}\right\rangle_{b} \\
&=\left\langle\lim _{n \rightarrow \infty}^{\|., b\|} T\left(x_{n}\right), \lim _{n \rightarrow \infty}, b \|\right. \\
& y_{n}|b\rangle \\
&=\left\langle\lim _{n \rightarrow \infty}^{\|\cdot b\|} x_{n}, T^{*}\left(\lim _{n \rightarrow \infty}^{\|\cdot b\|} y_{n}\right) \mid b\right\rangle \\
&=\left\langle\left(\lim _{n \rightarrow \infty}^{\|, b\|} x_{n}\right)+L_{b},\left(\lim _{n \rightarrow \infty}^{\|. b\|} T^{*}\left(y_{n}\right)\right)+L_{b}\right\rangle_{b} \\
&=\left\langle\lim _{n \rightarrow \infty} x_{n}+L_{b},\left(T^{*}\right)_{b}\left(\lim _{n \rightarrow \infty} y_{n}+L_{b}\right)\right\rangle_{b} \\
&=\left\langle z_{1},\left(T^{*}\right)_{b}\left(z_{2}\right)\right\rangle_{b} .
\end{aligned}
$$

Therefore $\left(T_{b}\right)^{*}=\left(T^{*}\right)_{b}$. Now if T is b-selfadjoint, then $\left(T^{*}\right)_{b}=T_{b}$ and so $\left(T_{b}\right)^{*}=T_{b}$. Applying [7, Theorem 1.2.2] we deduce $W_{b}(T)=W\left(T_{b}\right) \subseteq \mathbb{R}$. Conversely, if $W_{b}(T) \subseteq \mathbb{R}$, then T_{b} is a selfadjoint linear operator on the Hilbert space \mathcal{X}_{b}. That is, $\left(T_{b}\right)^{*}=T_{b}$. Consequently for each $x, y \in \mathcal{X},\langle T(x), y \mid b\rangle=\left\langle T_{b}\left(x+L_{b}\right), y+L_{b}\right\rangle_{b}=\left\langle x+L_{b}, T_{b}^{*}\left(y+L_{b}\right)\right\rangle_{b}=\left\langle x+L_{b}, T_{b}(y+\right.$ $\left.\left.L_{b}\right)\right\rangle_{b}=\langle x, T(y) \mid b\rangle$. Hence T is b-selfadjoint and so the proof is completed.

In the light of the above discussions we have the following statement.
Suppose that U and I are b-unitary and identity operators on a b-Hilbert space \mathcal{X}, respectively and $T \in B_{b}(\mathcal{X})$. Then we have
(i) $W_{b}(\alpha+\beta T)=\alpha+\beta W_{b}(T)$, for each α and β in \mathbb{k}.
(ii) $W_{b}\left(T^{*}\right)=\left\{\bar{\lambda}: \lambda \in W_{b}(T)\right\}$.
(iii) $W_{b}\left(U^{*} T U\right)=W_{b}(T)$.

References

[1] A. Arefijamaal and Gh. Sadeghi, Frames in 2-inner product spaces, Iranian J. Math. Sci. and informatics, 8(2013), no. 2, 123-130.
[2] R. Bahatia, Matrix analysis, Grad. Texts in Math. 169, Springer-Verlag, New York, 1997.
[3] Y. J. Cho, P. C. S. Lin, S. S. Kim and A. Misiak, Theory of 2-inner product spaces, Nova Science Publishers, Inc. New York, 2001.
[4] S. S. Dragomir, Some numerical radius inequalities for power series of operators in Hilbert spaces, J. Inequal. Appl. 298(2013) 1-12.
[5] S. Gähler, Linear 2-normierte Räume, Math. Nachr. 28(1964) 1-43.
[6] I. Goleț, On probabilistic 2-normed spaces, Novi. Sad J. Math. 35(2005) no. 1, 95-102.
[7] K. E. Gustafson and D. K. M. Rao, Numerical range, Springer-Verlag, New York, 1997.
[8] P. R. Halmos, A Hilbert space problem book(2nd ed.), Springer-Verlag, New York, 1982.
[9] P. K. Harikrishnan, P. Riyas and K. T. Ravindran, Riesz theorems in 2-inner product spaces, Novi. Sad J. Math. 41(2011) no. 2, 57-61.
[10] O. Hirzallah, F. Kittaneh and K. Shebrawi, Numerical radius inequalities for commutators of Hilbert space operators, Numer. Funct. Anal. Optim. 32(7), (2011) 739-749.
[11] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Acadmic Press. Inc. New York, 1983.
[12] F. Kittaneh, M. S. Moslehian and T. Yamazaki, Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl. 471(2015) 46-53.
[13] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glas. Math. Ser. III, 39(59), (2004) 303-314.
[14] H. Mazaheri and R. Kazemi, Some results on 2-inner product spaces, Novi. Sad J. Math. 37(2007) no. 2, 35-40.
[15] Sh. Rezapour and I. Kupka, 1-Type Lipschitz selections in generalized 2-Normed Spaces, Anal. Theory Appl. 24(2008) no. 3, 205-210.
[16] N. Srivastava, S. Bhattacharya and S. N. Lal, 2-Normed algebras-I, Publ. de L'institut math. Nouvelle srie, tome, 88(102) (2010), 111-121.

Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
E-mail address: khanehgir@mshdiau.ac.ir,
E-mail address: firozehasanvand@yahoo.com.

[^0]: 2010 Mathematics Subject Classification. Primary 46C50; Secondary 47A12.
 Key words and phrases. b-Hilbert space, bounded linear operator, 2-inner product space, 2-normed space, numerical range, numerical radius.

