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Abstract - Given a nonempty set   and a function          , three fuzzy topological spaces are introduced. Some 

properties of these spaces and relation among them are studied and discussed. 
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1. Introduction 

     Let   be a nonempty set and          be a function where           and              ,       (  is the set 

of natural numbers). Using this function, we introduce three fuzzy topological spaces, we study and discuss some properties of 

these spaces like compactness, connectedness. Finally, we give necessary and sufficient conditions under which some of these 

spaces coincide.  

2. Construction of the spaces 

 

We introduce the first fuzzy topology as follows: 

Let   be a nonempty set and       a function. For each     , define the fuzzy set 

    (     
( ))       where  

   
( )  {

                  ( )
 

 
                                    

  

Then we have ⋃         and       
( )  {

                  ( )
 

 
                                    

  

where            . Thus, the set          is a basis for a fuzzy topology on  , we denote it by   . 

Example 2.1. Let       be a function defined by   ( )     , then     (  
 

 
)        and hence {         is a 

base for the fuzzy topology    on  . 

Proposition 2.2. In the fuzzy topological space (    )  if      , such that     ( ),       then the set    
       

is a base for a fuzzy topology on    
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Proof. We have    
 ( )       

( )    
 

 
 

   

 
, thus,    

    
 ( )  

   

 
, where           . Also, 

 ⋃   
  

   
( )     {

   

 
    }   , thus ⋃   

  
      and this implies that the set    

       is a base for a fuzzy 

topology on    

Now, we introduce the second fuzzy topological space. 

Let   be a nonempty set and       be a function. Define the sets    ⋂   ( )   ,        ( )  

  ( ),     . Now, for each natural number  , define a fuzzy subset    {(     
( ))     } of  , where 

   
( )  {

                  
                          

 and      {   

 
}. Since ⋃   

 
      and          where   

        , the set            is a basis for a fuzzy topology on   denoted by   . 

Example 2.3. Let       be a function defined by  ( )  {
                 

                  
. Then     (   ) (   ) (   )    

 ,      (   ) (    ⁄ ) (    ⁄ ) (   )   ,     (   ) (    ⁄ ) (    ⁄ ) (    ⁄ ) (    ⁄ ) (   ) (   )    and so on. 

Since                         , and     , the set            is a base for the topology   on  . 

Lemma 2.4. In the fuzzy topological space (    )  if   is onto, then    is the indiscrete fuzzy topology. 

Proof. The proof is clear. 

Finally, we introduce the third fuzzy topological space as follows: 

Let   be a set containing at least one element and       be a one to one function, we define a fuzzy topology on   

as follows: 

Suppose    is a fixed point in   and   is a fixed natural number, let                       (  )            (  )   

   ,            (  )   (  ) , where   is the set of integers. Then we define the following fuzzy sets for each   in    

and for each   in  : 

   (   )      (  )  

   
( )  {

                                   (  )

  ⁄              (  )     (  )

                                         

 

Now, we have       ,       ,       {(   
 
)    (  )}     and (⋃   )    

      . Then the 

collection                  is a base for a fuzzy topology on  , we denote it by   . 

Example 2.5. Consider the function       defined by  ( )      and take     ,    . Then     and    

 (     )  {(    ⁄ )          } for all                . 

Lemma 2.6. Let   be a nonempty set endowed by the fuzzy topology   . Then the following are true: 

1.     iff  (  )   . 

2. The fuzzy topological space (    ) is a topological space iff    . 

Proof. The proof is clear. 

Theorem 2.7.   (    )  (    ) is onto iff   is open. 
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Proof. Let   be onto and    . If     ( ), for some    , then    
( )    and since   is onto, so    ( ) is exists and 

one of its value is     ( ), thus   (  )( )     {   
( )          ( )}     

(    ( ))   . Also, if     ( ), 

    , then there is not exists     such that   (   ( ))     ( ). Otherwise,   ( )    and this is a contradiction. 

So,    
(   ( ))  

 

 
 and   (  )( )     {   

( )          ( )}  
 

 
 . Hence for any   in  , we have     

( )  

    (  )( ) and    (  )    ,     . Hence   is open. 

 Now, let   be open, then the image of each basic open fuzzy set is open fuzzy, hence  (  ) is open fuzzy. Suppose 

contrary that   is not onto, so there exists   in   such that there is no   in   with  ( )    and this implies that   (  )( )    

which means that  (  ) is not open fuzzy and this contradict with being   is open. 

Theorem 2.8.   (    )  (    ) is continuous if   is one to one. 

Proof. Let    , if there exists a natural number   such that     ( ) , then    
( )    and  ( )      ( ) , so 

    (  )( )     
( ( ))   . Also, if     ( ),     , then    

( )  
 

 
 and since   is one to one,  ( )   (  ( ))  

  ( ( )),     
( ( ))  

 

 
 and so     (  )( )     

( ( ))  
 

 
 . Hence     (  )( )     

( ( )),     , this means that 

   (  )     and   is continuous. 

 The converse of above theorem need not be true as we see it in the following example. 

Example 2.9. Let   (    )  (    )  be a function defined by  ( )   , then   is not one to one and since    

      

 

   
 
   ,     ,    (  )              is open and   is continuous. 

Theorem 2.10.    (    )  (    ) is open iff   is onto. 

Proof. Let   be onto, then by Lemma 2.4. we have    is the indiscrete fuzzy topology and hence   is open. 

 Now, suppose that   is open. Since     ,  (  )   ( ) is open. But  ( ) is a nonempty classical set, so  (  ) 

must be a classical open set and the only nonempty classical open set is  , hence  (  )    that is  ( )    and this means 

that   is onto. 

Theorem 2.11.   (    )  (    ) is continuous if it is onto. 

Proof. Let   be onto, then by Lemma 2.4. we have    is the indiscrete fuzzy topology and hence   is continuous. 

The following example shows that the converse of above theorem is not true in general.  

Example 2.12. Suppose   (    )  (    )  is a function defined by  ( )   , then   is not onto. But, since    

      
 
   

 
    and    (  )             ,     , so    is continuous. 

Theorem 2.13.   (    )  (    ) is open iff   is onto. 

Proof. Suppose   is onto, we have to prove   is open. We claim that   (  )       and  ( )   . Let    , if    (  ), 

then there exists      such that     (  ). Thus,  

   
( )  {

             
 

 
                  

 ,      
( )  {

               
 

 
                          

   and so  
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  (  )( )     
(   ( ))  {

               
 

 
                             

 {
               
 

 
                          

      
( ) . In another side, since    (  ) and   is 

onto,    (  )   (  ), so   ( )   ,   ( 
  ( ))    and   ( )( )    ( 

  ( ))   . Thus,   ( )( )    ( )   . Hence 

 ( )   ,  (  )      ,      and this implies that   is open. Also, if    (  ), then    ( )   (  ) because   is onto, 

so   ( )   ,    ( 
  ( ))    and   ( )( )    ( 

  ( ))  1. Also    
( )    and   (  )( )     

(   ( ))   . Thus 

   
( )    (  )( )    and we obtain that          .  

 Now, Suppose that   is open, we have to prove   is onto. Let   be a non onto function, so there exists an element   in 

  with    ( ),     . If    (  ), then there exists     such that     (  ) . So    
( )   ,      

( )  
 

 
  and 

  (  )( )     
(   ( ))   . Thus  (  )  is not open which is contradiction, since   is open. But, if    (  ) , then 

  ( )   ,   ( )( )    ( 
  ( ))   , so  ( )    which means that  ( ) is not open and hence   is not open which is 

contradiction. Thus   is onto. 

Lemma 2.14. In (    ),    ( )   . 

Proof. For    , if    (  ), then     (  ),      and so  ( )      (  ) because   is one to one, so  ( )   (  ) 

and     ( )( )    ( ( ))   . If    (  ) , then  ( )   (  )  and     ( )( )    ( ( ))   , hence for    , 

    ( )( )  {
          (  )
                

   ( ) and    ( )   . 

Theorem 2.15.   (    )  (    ) is continuous if k=1. 

Proof. Let    , by Lemma 2.14.     ( )   , so     ( ) is open. Now, we have to show that     (  ) is open,      ., 

where       
( )  {

          (  )
                

 

Let    , if    (  ), then     (  )( )     
( ( ))   . If    (  ), then     ,     (  ) and since   is one to one,  

 ( )      (  ) , thus  ( )   (  )  and     (  )( )     
( ( ))   . Therefore,      (  )( )     

( ) ,      and 

   (  ) is open. Hence   is continuous. 

 The converse of above theorem is not true, for example, consider the function       defined by  ( )    and 

put     and     , then     (  )( )     
( ( ))     

( )   , so    (  )    and from Lemma 2.14. we have 

   ( )   . Hence   is continuous. 

3. Some properties of the spaces 

     In this section we discuss some properties for the spaces that were introduced in section two and we give necessary and 

sufficient conditions for the spaces to satisfy some of these properties like compactness and connectedness. 

Proposition 3.1. (    ) is a compact space. 

Proof. Let           be an open fuzzy cover for  , then       such that    
     . Thus every finite open fuzzy 

subset of           that containing    
 can be consider as a finite fuzzy subcover for  . Hence (    ) is a compact space. 

Proposition 3.2. (    ) is a connected space. 
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Proof. Since for every two basic open fuzzy sets   ,    we have either       or       depending on the values of   

and   that either     or     respectively. Hence there are no disjoint open fuzzy sets whose union is  . Therefore, 

(    ) is connected. 

Proposition 3.3. (    ) is not         . 

Proof. Since any two distinct fuzzy points (   ) and (   ) with equal memberships   are belong to the same basic open fuzzy 

set    where   
 

 
. Hence there is no open set that contain one of the elements not the other and this implies that (    ) is not 

a          . 

Proposition 3.4. (    ) is regular iff there is no an element   in   such that   ( )   , for some    . 

Proof. Suppose there is no an element   in   such that   ( )   , for some    , thus      with    
( )   ,     , 

so     (   

 
)      and   

   (     

 
)     . Thus there is no element     and closed fuzzy set   with     and 

this means that (    ) is regular. 

Now, suppose (    ) is a regular space. If there is an element     with    
( )   , then   does not belong to any 

closed fuzzy set, let   be one of such closed fuzzy set. But (    ) is regular, so there are disjoint open fuzzy sets one 

containing   and the other containing  , but this contradict the definition of    that there are no disjoint open fuzzy sets. Hence 

     with    
( )    and this implies that      such that   ( )   , for some    . 

Remark 3.5. Since every two open fuzzy sets in (    ) have nonempty intersection, so there are no disjoint closed fuzzy sets 

and this implies that (    ) is a normal space. 

Proposition 3.6. The fuzzy topological space (    ) is a Lindelof space for (       ). 

Proof. Since the base of the space (    ),         , is countable, hence every open cover has countable subcover. 

Proposition 3.7. (    ) is a connected space. 

Proof. Since      and      ,     . So there are no disjoint open fuzzy sets whose union be  . Hence (    ) is 

connected.     

Proposition 3.8. (    ) is a compact space. 

Proof. Let             be a open fuzzy cover for  . Since     , there exists an element    
   such that       

 and 

this implies that     
  is a finite open subcover for  . 

Proposition 3.9. (    ) is not         . 

Proof. Since each basic open fuzzy set contain every element of   with nonzero membership, (    ) is not         . 

Proposition 3.10. (    ) is regular iff   is onto. 

Proof. Suppose   is onto, then by Lemma 2.4. we have    is the indiscrete fuzzy topology and hence   is regular. 

     Now, let   be a regular space and   be a non-onto function, then     . Take     , then    
( )  

 

 
 , so  (   

 
)  is a 

fuzzy point in   and   
  is a closed fuzzy set not containing the fuzzy point  (   

 
) , then there exist two disjoint open fuzzy 
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sets   and   such that   
    and   containing the fuzzy point  (   

 
) . But from the definition of    we have no disjoint 

open sets, thus we have a contradiction. Hence   must be onto. 

Proposition 3.11. (    ) is a normal space. 

Proof. Since the basic open fuzzy sets have the property that          , so the closed fuzzy sets have the property 

that     
    

   , hence there are no disjoint closed sets and consequently   is normal. 

Proposition 3.12. (    ) is connected iff    . 

Proof. Suppose   is connected, we have to prove    . If    , then take   ⋃       
 and hence   and   are two disjoint 

nonempty open fuzzy sets whose union is   and this is a contradiction. Thus,    . 

Now, let    , since for any basic open fuzzy sets    and    we have         (   
 
)      which is 

nonempty. Hence   is connected. 

Proposition 3.13. (    ) is a compact iff    is finite. 

Proof. Suppose    is a finite set say                 and let           be an open fuzzy cover for  , then there exist 

   
,    

,  ,    
,    

 in           such that    
    

 for            and      
. Hence     

    
    

      
  is a finite 

open fuzzy subcover for   and this means that   is compact. 

Now, let   be a compact space and    infinite set, then               is an open fuzzy cover for   that have no 

finite subcover, so   is not compact and this contradict with our assumpsion. Thus    must be finite. 

 Proposition 3.14. (    ) is           iff   has atmost one element and  (  )    . 

Proof. Suppose   has atmost one element and  (  )    . If    , then        and   is         . If    , then there 

exists      in   such that      , that is          and there is an open fuzzy set   contain   but not   . Hence   is 

        . 

 Now, let (    ) be a          . If  (  )    , then there exists an element   in   such that  (  )    and this 

means that      and there is no open fuzzy set contains only one of them, so   is not          which is contradiction. 

Also, if   contains two elements, then it makes   to be non           Hence must  (  )     and   contains atmost one 

element. 

Proposition 3.15. (    ) is regular iff  (  )    . 

Proof. Suppose  (  )     and    . Let   be a nonempty closed fuzzy set not containing  . We have two cases; first, if 

    , then     
 , so there exist two disjoint open fuzzy sets   and    such that     and     . Second, if     , then 

    and     , so there exist two disjoint open fuzzy sets   and    such that      and    . In both cases we conclude 

that   is regular. 

Now, let   be a regular space and  (  )    . Put      and    (  ), then for the closed fuzzy set   
  not 

containing  , there exist two disjoint open fuzzy sets   and   such that     and   
   . Since    ,    , but 

   
 ( )  

   

 
 and   ( )   , so   

    which is a contradiction. Hence    , that is  (  )    . 

Proposition 3.16. (    ) is a normal space. 

Proof. To prove   is normal, we have two cases; 
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1. If  (  )     and    , then there are only two nonempty disjoint closed fuzzy sets    and   
 , so there are two 

disjoint open fuzzy sets   and    such that   
   ,       and hence   is normal. 

2. If either  (  )     or    , then we have no disjoint nonempty closed fuzzy sets, thus   is normal. 

 

4. Relation among the spaces 

     In this section we study the necessary conditions for some of the spaces to be coincide. For this purpose we have the 

following theorems. 

Theorem 4.1. The two fuzzy topologies    and    are equal iff for every    , there exists     such that   ( )   . 

Proof. Assume that for every    , there exists     such that   ( )   , then     ,      and    is the indiscrete 

fuzzy topology. Furthermore, we have from the assumption that for every    ,    
( )   , so    is the indiscrete fuzzy 

topology. Therefore,      . 

 Now, suppose that       and according to the definitions of    and   , we have for every    ,    
( )  

{
                  ( )
 

 
                                    

  and    
( )  {

   {   

 
}               

                              
. By contrary that if there exists   in   such that for 

every natural number  ,   ( )   , then    
( )  

 

 
 ,    

( )     {   

 
} which they are not equal. Therefore, for every 

   , there exists     such that   ( )    and this completes the proof. 

Theorem 4.2. The two fuzzy topologies    and    are never be equal. 

Proof. From the fuzzy topology   ,   (  )   , but there is no open fuzzy set   in    and    in   such that   ( )   . Thus 

     . 

Theorem 4.3. The two fuzzy topologies    and   are equal iff   is onto,  (  )    and    . 

Proof. Suppose   is onto,  (  )    and    , then     ,      and     , so    
( )   ,     ,      and 

hence    is the indiscrete fuzzy topology. Also, since  (  )   ,     and    
( )   . Thus     ,       and    is the 

indiscrete fuzzy topology. Hence       . 

 Now, let      , since for each   in  , we have        
( )  {

   {   

 
}               

                              
    

and       
( )  {

                                   (  )

  ⁄              (  )     (  )

                                         

 

So they are equal if  
 

 
  ,     and  

 

 
   that is    ,  (  )    and    . But for   , we have     and this implies 

that     . Hence   is onto,  (  )    and    . 
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