# The Extended Riesz Theorem and its Results

Atefeh Jaberi, Hamidreza Goudarzi<sup>2\*</sup>

ABSTRACT— The main purpose of this paper is to extended the Riesz theorem in fuzzy anti n-normed linear spaces as a generalization of linear n-normed space. Also we study some properties of fuzzy anti n-normed linear spaces.

Keywords—Riesz theorem, Fuzzy n-compact sets, Fuzzy anti n-norms,  $\alpha$  n-norms.

#### 1. INTRODUCTION

A satisfactory theory of 2 norms of a linear space has been introduced and developed by Gahler to n-norm on a linear space [6]. In following H. Gunawan and M. Mashadi [7], S. S. Kim and Y. J. Cho [11], R. Malceski [17] and A. Misiak [18] developed the theory of n-normed space [18]. The more detailes about the theory of fuzzy normed linear space can be found in [1, 2, 5, 21]. The concept of fuzzy sets was introduced by L. A. Zadeh in 1965 [26] and thereafter several authors applied it in different branches of pure and applied Mathematics. The concept of fuzzy norms was introduced by A. K. Katsaras in 1984 [9]. In 1992, C. Felbin introduced the concept of Fuzzy normed linear space[5]. The notion of Fuzzy 2 normed linear spaces introduced by A.R. Meenakshi and R. Gokilavani in 2001. B. Sundander Reddy introduced the idea of Fuzzy anti 2-normed linear spaces [25]. AL. Narayanan and S. Vijayabalaji introduced the definition of fuzzy n-norm on a linear space and Also, Vijayabalaji [19] and Thillaigovindan introduced study of the complete fuzzy n-normed linear spaces [27]. I. H. Jebril and S. K. Samanta gave the definition of a Fuzzy anti normed linear space in 2011 [16]. F. Riesz obtained the Riesz theorem in a normed space[22]. Park and Chu have extended the Riesz theorem in a normed space to n-normed linear space [20].

Following Kavikumar, Yang Bae Jun and Azme Khamis [10], in this paper extend the Riesz theorem in n-normed linear spaces to fuzzy Anti n-normed linear spaces. Also, we establish some basic results.

## 2. PRIMILINARIES

The main purpose of this article is the extension of Riesz theorem to fuzzy anti n-normed linear spaces. In the first part, we try to establish some basic theorems and by aimes of this result, we do our main goal.

**Definition 2.1** [8] If W is a linear subspace of a finite-dimentional vector space V, then the codimension of W in V is the difference between the dimensions,

$$co\dim(W) = \dim(V) - \dim(W)$$

**Definition 2.2** [10] Let  $n \in \square$  and X be a real linear space of dimension  $d \ge n$ . (Here we allow d to be infinite). A

real valued function  $\| \bullet, ..., \bullet \|$  on  $X \times ... \times X$  (*n times* =  $X^n$ ) satisfying four properties:

- (NI)  $||x_1,...,x_n||=0$  iff  $x_1,...,x_n$  are linearly dependent,
- (N2)  $||x_1,...,x_n||$  is invariant under any permutation of  $x_1,...,x_n$ ,
- (N3)  $||x_1,...,cx_n|| = |c| ||x_1,...,x_n||$ , for any real c,

(N4) 
$$||x_1,...,x_{n-1},y+z|| \le ||x_1,...,x_{n-1},y|| + ||x_1,...,x_{n-1},z||$$
,

is called a n-normed on X and the pair  $(X, \| \bullet, \dots, \bullet \|)$  is called a n-normed linear space.

<sup>&</sup>lt;sup>1</sup> Department of Mathematics, Faculty of Science, Yasouj University, Yasouj, Iran.

<sup>&</sup>lt;sup>2</sup> Department of Mathematics, Faculty of Science, Yasouj University, Yasouj, Iran.

<sup>\*</sup>Corresponding author's email: goudarzi [AT] mail.yu.ac.ir

**Definition 2.3** [10] A sequence  $\{x_n\}$  in a linear n-normed space  $(X, \|\bullet, ..., \bullet\|)$  is said to be n- convergent to  $x \in X$  and denote by  $x_k \to x$  as  $k \to \infty$  if

$$\lim_{k \to \infty} || x_1, ..., x_{n-1}, x_n - x || = 0.$$

**Definition 2.4** [15] A subset of a linear n-normed space  $(X, \| \bullet, ..., \bullet \|)$  is called a n-compact subset if for every sequence  $\{x_n\}$  in Y, there exists a subsequence of  $\{x_n\}$  which converges to an element  $x \in X$ .

From this view point, Park and Chu [20] obtained the following theorem in n-normed spaces:

**Theorem 2.1** [10] Let Y and Z be two subspaces of a linear n- normed space X, and Y be a n-compact proper subset of Z with codimension greater than n-1. For each  $\theta \in (0,1)$ , there exists an element  $(z_1,...,z_n) \in Z_n$  such that

$$||z_1,...,z_n||=1,$$
  $||z_1-y,...,z_n-y|| \ge \theta,$ 

for all  $y \in Y$ .

**Definition 2.5** [3] A binary operation  $\lozenge:[0,1]\times[0,1]\to[0,1]$  is a continuous t - conorm if  $\lozenge$  satisfies the following conditions:

- (i) ♦ is commutative and associative,
- (ii) ◊ is continuous,
- (iii)  $a \lozenge 0 = a, \forall a \in [0,1],$
- (iv)  $a \lozenge b \le c \lozenge d$  whenever  $a \le c, b \le d$  and  $a, b, c, d \in [0,1]$

A few examples of continuous t - conorm are  $a \lozenge b = a + b - ab$ ,  $a \lozenge b = \max\{a,b\}$  and  $a \lozenge b = \min\{a+b,1\}$ .

**Remark 2.1** [1] For any  $a,b \in (0,1)$  with a > b there exists  $c \in (0,1)$  such that  $a > c \lozenge b$ .

**Definition 2.6** [27] Let X be a linear space over a real field F. A fuzzy subset N of  $X^n \times [0, \infty)$  is called a fuzzy anti n-norm on X if and only if:

(FAN1) for all  $t \in \square$  with  $t \le 0$ ,  $N(x_1,...,x_n, t) = 1$ ,

(FAN2) for all  $t \in \square$  with t > 0,  $N(x_1,...,x_n, t) = 1$ ,  $x_1,...,x_n$  are linearly dependent,

(FAN3)  $N(x_1,...,x_n, t)$  is invariant under any permutation of  $x_1,...,x_n$ ,

(FAN4)  $N(x_1,...,cx_n, t) = N(x_1,...,x_n,t/|c|)$  if  $c \neq 0, c \in F$ ,

 $(FAN5)\ N(x_1,...,x_n+x_n',s+t) \le N(x_1,...,x_n,s) \Diamond N(x_1,...,x_n',t) \text{ for all } s,t \in \square$ 

(FAN6)  $N(x_1,...,x_n,...)$  is a continuous and non-increasing function of  $\square$  such that

$$\lim_{t \to \infty} N(x_1, ..., x_n, t) = 0.$$

Then (X, N) is called a fuzzy anti n-normed linear space.

**Definition 2.7** [27] A sequence  $\{x_n\}$  in a fuzzy anti n-normed space (X,N) is said to converge to x if for given r > 0, t > 0 and 0 < r < 1, there exists an integer  $n_0 \in \square$  such that  $N(x_1, ..., x_{n-1}, x_n - x, t) < r$ , for all  $n \ge n_0$ .

**Example 2.1** [27] Let  $(X, \| \bullet, \dots, \bullet \|)$  be a n-normed linear space. Define,

$$N(x_1,...,x_n, t) = \begin{cases} 1 - \frac{t}{t + ||x_1,...,x_n||} & t > 0, \forall x \in X, \\ 1 & t \le 0, \forall x \in X. \end{cases}$$

Then (X, N) is a fuzzy anti n-normed linear space.

**Theorem 2.2** [27] Let (X, N) be a fuzzy anti n-normed space. Assume that condition that

(FAN7) 
$$N(x_1,...,x_n, t) > 0, \forall t > 0,$$

implies  $x_1,...,x_n$  are linearly dependent. Define  $\|x_1,...,x_n\|_{\alpha} = \sup\{t: N(x_1,...,x_n,t) \le 1-\alpha\}, \alpha \in (0,1)$ . Then  $\{\|\bullet,...,\bullet\|_{\alpha}: \alpha \in (0,1)\}$  is a descending family of n-normes on X. These n-norms are called  $\alpha$ -n-norms on X corresponding to the fuzzy anti n-norm on X.

**Definition 2.8** [2] The fuzzy normed space (X, N) is said to be a fuzzy anti n-normed Banach space whenever X is complete with respect to the fuzzy metric induced by fuzzy anti n-norm.

## 3. FUZZY RIESZ THEOREM

Riesz [22] obtained the following theorem in a normed space.

**Theorem 3.1** [22] Let Y and Z be subspaces of a normed space X, and Y a closed proper subset of Z. For each  $\theta \in (0,1)$ , there exists an element  $z \in Z$  such that

$$||z||=1,$$
  $||z-y|| \ge \theta,$ 

for all  $y \in Y$ .

Now we try to extend Riesz theorem to fuzzy anti n-normed linear spaces. Also, we prove some corollaries of this theorem at the end of this section.

**Definition 3.1** A subset Y of a fuzzy anti n-normed linear space (X,N) is called a fuzzy n-compact subset if for every sequence  $\{y_n\}$  in Y, there exists a subsequence  $\{y_n\}$  of  $\{y_n\}$  which converges to an element  $y \in Y$ . In other words, given t > 0 and 0 < r < 1, there exists an integer  $n_0 \in \square$  such that

$$N(y_1,...,y_{n-1},y_{n_k}-y, t/k) < r,$$

for all  $n, k \ge n_0$  and  $n_k \ge n_0$ .

**Lemma 3.1** Let (X,N) be a fuzzy anti n-normed linear space. Assume that  $x_i \in X$  for each  $i \in \{1,...,n\}$  and  $c \in F$ . Then

$$N(x_1,...,x_j+cx_i,...,x_n, t) = N(x_1,...,x_i,...,x_j,...,x_n, t).$$

Proof.

$$\begin{split} N(x_1,...,x_j+cx_i,...,x_n,\ t) &= N(x_1,...,x_j+cx_i,...,x_n,\ t/2+t/2) \\ &\leq \max\{N(x_1,...,x_i,...,x_j,...,x_n,\ t/2),N(x_1,...,x_i,...,x_j,...,x_n,\ t/2)\} \\ &= \max\{N(x_1,...,x_i,...,x_j,...,x_n,\ t/2),N(x_1,...,x_i,...,x_j,...,x_n,\ t/|\ c|\ 2)\},(|\ c|=1) \\ &= \max\{N(x_1,...,x_i,...,x_j,...,x_n,\ t/2),N(x_1,...,x_i,...,x_j,...,x_n,\ t/2)\} \\ &\geq N(x_1,...,x_i,...,x_j,...,x_n,\ t). \end{split}$$

**Theorem 3.2** Let (X, N) be a fuzzy anti n-normed linear space. If the

$$\sup_{y \in Y} \{t > 0 : N(x_1 - y, ..., x_n - y, t)\} = 0,$$

for  $(x_1,...,x_n) \in X_n$  and Y is a fuzzy n-compact subset of X, then there exists an element  $y_0 \in Y$  such that

$$\{t > 0 : N(x_1 - y_0, ..., x_n - y_0, t)\} = 0,$$

**Proof.** Let t > 0 and  $\varepsilon \in (0,1)$ . Choose  $r \in (0,1)$  such that  $r \lozenge r < \varepsilon$  (remark 2.1). Since Y is a fuzzy n-compact subset of X, there exists an integer  $n_0 \in \square$  such that

$$N(x_1 - y_k, ..., x_n - y_k, ct) < r,$$

for all  $n, k \ge n_0$  and a constant c. Since  $\{y_k\}$  is a sequence in a fuzzy n-compact subset Y of X. Without loss of generality assume that  $\{y_k\}$  converges to  $y_0 \in Y$ , as  $k \to \infty$ . Then for given,  $0 < \lambda < 1$ , there exists an integer  $n_1 \in \square$  such that

$$N(y_k - y_0, \omega_2, ..., \omega_n, t) < \lambda$$
,

for all  $\omega_i \in X(i=1,...,n)$  and  $n_0 > n_1$ . For every  $r \in (0,1)$ , there exists  $\lambda \in (0,1)$  such that (remark 2.1)

$$\overbrace{\lambda \Diamond \lambda \Diamond ... \lambda}^{n} < r.$$

by lemma 3.1, if  $n_0 > n_1$ , then we have

Therefore

$$N(x_{1} - y_{0}, x_{2} - y_{0}, ..., x_{n} - y_{0}, t) \leq N(y_{k} - y_{0}, x_{2} - y_{0}, ..., x_{n} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{k}, y_{k} - y_{0}, x_{3} - y_{0}, ..., x_{n} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{k}, x_{2} - y_{k}, y_{k} - y_{0}, ..., x_{n} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{k}, x_{2} - y_{k}, x_{3} - y_{k}, ..., y_{k} - y_{0}, x_{n} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{k}, x_{2} - y_{k}, x_{3} - y_{k}, ..., x_{n-1} - y_{k}, y_{k} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{k}, x_{2} - y_{k}, x_{3} - y_{k}, ..., x_{n-1} - y_{k}, x_{n} - y_{k}, (k-n)t/k)$$

$$= N(y_{k} - y_{0}, x_{2} - y_{0}, ..., x_{n} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{0}, y_{k} - y_{0}, x_{3} - y_{0}, ..., x_{n} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{0}, x_{2} - y_{0}, y_{k} - y_{0}, ..., x_{n} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{0}, x_{2} - y_{0}, x_{3} - y_{0}, ..., x_{n} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{0}, x_{2} - y_{0}, x_{3} - y_{0}, ..., x_{n} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{0}, x_{2} - y_{0}, x_{3} - y_{0}, ..., x_{n-1} - y_{0}, y_{k} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{0}, y_{k} - y_{0}, x_{3} - y_{0}, ..., x_{n-1} - y_{0}, y_{k} - y_{0}, t/k)$$

$$\Diamond N(x_{1} - y_{k}, x_{2} - y_{k}, x_{3} - y_{k}, ..., x_{n-1} - y_{k}, x_{n} - y_{k}, ct)$$

$$\langle r \lozenge r \langle \varepsilon.$$

Since  $\varepsilon$  is arbitrary,

$$\sup\{t>0: N(x_1-y_0,x_2-y_0,...,x_n-y_0,t)\}=0$$

Now, we reperesent Riesz Theorem for fuzzy anti n-normed linear spaces.

**Theorem 3.3 Riesz Theorem.** Let (X,N) be a fuzzy anti n-normed linear space satisfying condition (FAN7) and  $\{\|\bullet,...,\bullet\|_{\alpha}: \alpha \in (0,1)\}$  be a descending family of  $\alpha$ - n- norms corresponding to (X,N). Let Y and Z be subspaces of X and Y be a fuzzy n-compact proper subset of Z with  $\dim Z \ge n$ . For each  $k \in (0,1)$ , there exists an element  $(z_1,...,z_n) \in Z_n$  such that

$$||z_1,...,z_n||_{\alpha} = 0,$$
  $N(z_1 - y,...,z_n - y,t) \ge \alpha,$ 

for all  $y \in Y$ .

**Proof.** Let  $\alpha \in (0,1)$ ,  $(v_1,...,v_n) \in Z-Y$  with  $v_1,...,v_n$  are linearly independent. Let

$$\sup_{y \in Y} ||v_1 - y, ..., v_n - y||_{\alpha} = k.$$

We follow the proof in two cases:

Case (i): Assume that k = 0. By theorem 3.2, there is an element  $y_0 \in Y$  such that  $N(v_1 - y_0, ..., v_n - y_0) = 0$ .

If  $y_0 = 0$ , then  $v_1, ..., v_n$  are linearly independent, which is a contradiction.

If  $y_0 \neq 0$ , then  $v_1, ..., v_n$  are linearly independent.

Case (ii): Let k > 0, where

$$k = ||v_1 - y, ..., v_n - y||_{\alpha} = \sup\{s : N(v_1 - y, ..., v_n - y, s) \le \alpha\},\$$

Since  $N(v_1 - y,...,v_n - y,s)$  is continuous (definition 2.6), now we have (by theorem 4.4, in [19]),

$$N(v_1 - y, ..., v_n - y, s) \le 1 - \alpha,$$

So for each  $k_1 \in (0,1)$ , there exists an element  $y_0 \in Y$  such that

$$k \ge ||v_1 - y_0, ..., v_n - y_0||_{\alpha} \ge \frac{k}{k_1}.$$

For each j=1,...,n, let

$$z_{j} = \frac{v_{j} - y_{0}}{\|v_{1} - y_{0}, \dots, v_{n} - y_{0}\|_{\alpha}^{\frac{1}{n}}}.$$

Then it is obvious that  $||z_1,...,z_n||_{\alpha} = 0$ .

Now,

$$||z_{1} - y_{0}, ..., z_{n} - y_{0}||_{\alpha} = \left\| \frac{v_{1} - y_{0}}{||v_{1} - y_{0}, ..., v_{n} - y_{0}||_{\alpha}^{\frac{1}{n}}} - y, ..., \frac{v_{n} - y_{0}}{||v_{1} - y_{0}, ..., v_{n} - y_{0}||_{\alpha}^{\frac{1}{n}}} - y \right\|_{\alpha}$$

$$= \left\| \frac{1}{|||v_{1} - y_{0}, ..., v_{n} - y_{0}||_{\alpha}} |||v_{1} - (y_{0} + y |||v_{1} - y_{0}, ..., v_{n} - y_{0}||_{\alpha}^{\frac{1}{n}}, ..., v_{n} - (y_{0} + y |||v_{1} - y_{0}, ..., v_{n} - y_{0}||_{\alpha}^{\frac{1}{n}}|||} \right\|_{\alpha}$$

Ш

$$\leq \frac{1}{\|v_{1} - y_{0}, ..., v_{n} - y_{0}\|_{\alpha}}$$

$$\leq \frac{k}{k / k_{1}}$$

$$= k_{1},$$

By (FAN7), there exists  $\alpha \in (0,1)$  such that

$$\sup\{k>0: N(z_1-y,...,z_n-y,k)\leq 1-\alpha\}\leq k_1$$
.

Then there exists  $\alpha_0 \in (0,1)$  such that

$$N(z_1 - y, ..., z_n - y, k_1) > \alpha_0 \ge 1 - \alpha$$

for all  $y \in Y$ .

Corollary 3.1 Given a strictly nested sequence of closed subspaces

$$\{0\} \varnothing N_1 \varnothing N_2 \varnothing N_3 \varnothing N_4 \varnothing \dots$$

of a fuzzy Banach space X, one can find a sequence of vectors  $x_1,...,x_n \in N_n$  with  $\|x_1,...,x_n\|_{\alpha} = 0$  and  $N(x_1 - N_{n-1},...,x_n - N_{n-1}) \geq \frac{1}{2}$ . Similarly, for a sequence of closed subspaces nested in the opposite direction  $\{0\} \overset{.}{\mathsf{U}} \overset{.}{\mathsf{R}}_1 \overset{.}{\mathsf{U}} \overset{.}{\mathsf{R}}_2 \overset{.}{\mathsf{U}} \overset{.}{\mathsf{R}}_4 \overset{.}{\mathsf{U}} \ldots$ , there are unit vectors  $x_n \in R_n$  with  $N(x_1 - R_{n+1},...,x_n - R_{n+1}) > \frac{1}{2}$ .

**Proof.** Pick any  $x_1$  of norm  $N_1$ . Let  $F_1$  be the linear span of  $x_1$ . Then  $F_1$  is finite dimensional and, hence, closed. By Riesz's Lema, there is an  $x_2$  of norm  $N_1$  such that  $N(x_1-N_{n-1},x_2-N_{n-1})\geq \frac{1}{2}$ . Let  $F_2$  be the linear span of  $x_1$  and  $x_2$ . Then  $F_2$  is finite dimensional and, hence, closed. By Riesz's Lemma, there is an  $x_3$  of norm  $N_1$  such that  $N(x_1-N_{n-1},x_2-N_{n-1})\geq \frac{1}{2}$ . Continue ...  $\square$ 

The same corollary has been achieved in linear normed space as follows:

Corollary 3.2 Given a strictly nested sequence of closed subspaces

$$\{0\} \varnothing N_1 \varnothing N_2 \varnothing N_3 \varnothing N_4 \varnothing \dots$$

of a Banach space X, one can find a sequence of vectors  $x_n \in N_n$  with  $||x_n|| = 1$  and  $dist(x_n, N_{n-1}) \ge \frac{1}{2}$ . Similarly, for a sequence of closed subspaces nested in the opposite direction,  $\{0\} \overset{.}{\mathrm{U}} R_1 \overset{.}{\mathrm{U}} R_2 \overset{.}{\mathrm{U}} \dots$ , there are unit vectors  $x_n \in R_n$  with  $dist(x_n, R_{n-1}) \ge \frac{1}{2}$ .

#### 4. REFERENCES

- [1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, The Journal of Fuzzy Mathematics, 11 (2003), no. 3, 687 705.
- [2] S. C. Cheng, J. N. Mordeson, Fuzzy linear operators and fuzzy normed spaces, Bull. Cal. Math. Soc. 86 (1994) 429-436.
- [3] B. Dinda, T.K. Samanta and Iqbal, H. Jebril, Fuzzy anti-norm and fuzzy a- anti- convergence, arXiv preprint arXiv:1002.3818 (2010).
- [4] B. Dinda, T.K. Samanta and Iqbal, H. Jebril, Fuzzy anti-bounded linear operator, Stud. Univ. Babes-Bolyen, Math, 56 (2011), No. 4, 123-137.
- [5] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Syst, 48 (1992), 239-248.
- [6] S. Gahler, Unter Suchyngen Uber Veralla gemeinerte m-metrische Raume I, Math. Nachr., 40 (1969), 165 189.
- [7] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math and Math. Sci., 27 (2001), No. 10, 631 639.

Ш

- [8] J. R. Smith Complement of codimention two submanifolds III- cobordism theory, pacific Journal of mathematical, Vol 94, No. 2, (1981), 423 484.
- [9] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Syst. 12 (1984), 143-154.
- [10] J. Kavikumar, Y. B. jun and A. khamis, The Riesz theorem in fuzzy n-normed linear spaces, J. Appl. Math. And Informatics, 27 (2009), No. 3 4, pp. 541 555.
- [11] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math., 29 (1996), No. 4, 739 -744.
- [12] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Monthly, 72 (1965), 1004-1006.
- [13] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica. 11 (1975), 326-334.
- [14] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets Syst, 40 (1969), 165-189.
- [15] Kuldip Raj, Sunil K. Sharma and Ajay K. Sharma, Difference sequence spaces in n-normed spaces defined by Musielak-Orlicz function, Armenian Journal of mathematics, Vol 3, No 3, (2010), 127-141.
- [16] I. H. Jebril and S. K. Samanta, Fuzzy anti-normed linear space, J. math. and Tech, February, pp. 66-77, 2010.
- [17] R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten, 21 (1997), no. 47, 81 102.
- [18] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299 319.
- [19] AL. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. and Math. Sci., (2005), no. 24, 3963 3977.
- [20] C. Park and H. Y. Chu, The Riesz theorem in linear n-normed spaces, Journal of the Chungcheong Math. Soc., 19 (2006), no. 2, 207 211.
- [21] G. S. Rhie, B. M. Choi and S. K. Dong, On the completeness of fuzzy normed linear spaces, Math. Japonica, 45 (1997), no. 1, 33 37.
- [22] F. Riesz, Uber lineare Funktionalgleichungen, ActaMath, 41 (1918), 71 98.
- [23] J. Schauder, Der Fixpunktsatz in Funktionalraumen, Studia Math. 2 (1930) 171-180.
- [24] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314 334.
- [25] B. Surender Reddy ,Fuzzy Anti-2-Normed Linear Space, Journal of Mathematics Research, Vol. 3, No. 2, May (2011).
- [26] L. A. Zadeh, Fuzzy set, Information and Control, 8 (1965), pp. 338-353.
- [27] S. Vijayabalaji and N. Thillaigovindan, Complete fuzzy n-normed linear space, Journal of Fund. Sci., 3 (2007), 119 126.