The Extended Riesz Theorem and its Results

Atefeh Jaberi, Hamidreza Goudarzi ${ }^{2 *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Yasouj University, Yasouj, Iran.
${ }^{2}$ Department of Mathematics, Faculty of Science, Yasouj University, Yasouj, Iran.
*Corresponding author's email: goudarzi [AT] mail.yu.ac.ir

Abstract

The main purpose of this paper is to extended the Riesz theorem in fuzzy anti n-normed linear spaces as a generalization of linear n-normed space. Also we study some properties of fuzzy anti n-normed linear spaces.

Keywords- Riesz theorem, Fuzzy n-compact sets, Fuzzy anti n-norms, α n-norms.

1. INTRODUCTION

A satisfactory theory of 2 norms of a linear space has been introduced and developed by Gahler to n-norm on a linear space [6]. In following H. Gunawan and M. Mashadi [7], S. S. Kim and Y. J. Cho [11], R. Malceski [17] and A. Misiak [18] developed the theory of n-normed space [18]. The more detailes about the theory of fuzzy normed linear space can be found in [1, 2, 5, 21]. The concept of fuzzy sets was introduced by L. A. Zadeh in 1965 [26] and thereafter several authors applied it in different branches of pure and applied Mathematics. The concept of fuzzy norms was introduced by A. K. Katsaras in 1984 [9]. In 1992, C. Felbin introduced the concept of Fuzzy normed linear space[5]. The notion of Fuzzy 2 normed linear spaces introduced by A.R. Meenakshi and R. Gokilavani in 2001. B. Sundander Reddy introduced the idea of Fuzzy anti 2-normed linear spaces [25]. AL. Narayanan and S. Vijayabalaji introduced the definition of fuzzy n-norm on a linear space and Also, Vijayabalaji [19] and Thillaigovindan introduced study of the complete fuzzy n-normed linear spaces [27]. I. H. Jebril and S. K. Samanta gave the definition of a Fuzzy anti normed linear space in 2011 [16]. F. Riesz obtained the Riesz theorem in a normed space[22]. Park and Chu have extended the Riesz theorem in a normed space to n-normed linear space [20].

Following Kavikumar, Yang Bae Jun and Azme Khamis [10], in this paper extend the Riesz theorem in n-normed linear spaces to fuzzy Anti n-normed linear spaces. Also, we establish some basic results.

2. PRIMILINARIES

The main purpose of this article is the extension of Riesz theorem to fuzzy anti n-normed linear spaces. In the first part, we try to establish some basic theorems and by aimes of this result, we do our main goal.

Definition 2.1 [8] If W is a linear subspace of a finite-dimentional vector space V, then the codimension of W in V is the difference between the dimensions,

$$
\operatorname{codim}(W)=\operatorname{dim}(V)-\operatorname{dim}(W)
$$

Definition 2.2 [10] Let $n \in \square$ and X be a real linear space of dimension $d \geq n$. (Here we allow d to be infinite). A
real valued function $\|\bullet, \ldots, \bullet\|$ on $X \times \ldots \times X\left(n\right.$ times $\left.=X^{n}\right)$ satisfying four properties:
(N1) $\left\|x_{1}, \ldots, x_{n}\right\|=0$ iff x_{1}, \ldots, x_{n} are linearly dependent,
(N2) $\left\|x_{1}, \ldots, x_{n}\right\|$ is invariant under any permutation of x_{1}, \ldots, x_{n},
(N3) $\left\|x_{1}, \ldots, c x_{n}\right\|=|c|\left\|x_{1}, \ldots, x_{n}\right\|$, for any real c,
(N4)
$\left\|x_{1}, \ldots, x_{n-1}, y+z\right\| \leq\left\|x_{1}, \ldots, x_{n-1}, y\right\|+\left\|x_{1}, \ldots, x_{n-1}, z\right\|$,
is called a n-normed on X and the pair $(X,\|\bullet, \ldots, \bullet\|)$ is called a n-normed linear space.

Definition 2.3 [10] A sequence $\left\{x_{n}\right\}$ in a linear n-normed space $(X,\|\bullet, \ldots, \bullet\|)$ is said to be n - convergent to $x \in X$ and denote by $x_{k} \rightarrow x$ as $k \rightarrow \infty$ if

$$
\lim _{k \rightarrow \infty}\left\|x_{1}, \ldots, x_{n-1}, x_{n}-x\right\|=0
$$

Definition 2.4 [15] A subset of a linear n-normed space $(X,\|\bullet, \ldots, \bullet\|)$ is called a n-compact subset if for every sequence $\left\{x_{n}\right\}$ in Y , there exists a subsequence of $\left\{x_{n_{k}}\right\}$ which converges to an element $x \in X$.

From this view point, Park and Chu [20] obtained the following theorem in n-normed spaces:
Theorem 2.1 [10] Let Y and Z be two subspaces of a linear n - normed space X, and Y be a n-compact proper subset of Z with codimension greater than $n-1$. For each $\theta \in(0,1)$, there exists an element $\left(z_{1}, \ldots, z_{n}\right) \in Z_{n}$ such that

$$
\left\|z_{1}, \ldots, z_{n}\right\|=1, \quad\left\|z_{1}-y, \ldots, z_{n}-y\right\| \geq \theta
$$

for all $y \in Y$.
Definition 2.5 [3] A binary operation $\diamond:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous t - conorm if \diamond satisfies the following conditions:
(i) \diamond is commutative and associative,
(ii) \diamond is continuous,
(iii) $a \diamond 0=a, \quad \forall a \in[0,1]$,
(iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c, b \leq d$ and $a, b, c, d \in[0,1]$

A few examples of continuous t - conorm are $a \diamond b=a+b-a b, a \diamond b=\max \{a, b\}$ and $a \diamond b=\min \{a+b, 1\}$.
Remark 2.1 [1] For any $a, b \in(0,1)$ with $a>b$ there exists $c \in(0,1)$ such that $a>c \diamond b$.
Definition 2.6 [27] Let X be a linear space over a real field F. A fuzzy subset N of $X^{n} \times[0, \infty)$ is called a fuzzy anti n-norm on X if and only if:
(FAN1) for all $t \in \square$ with $t \leq 0, N\left(x_{1}, \ldots, x_{n}, t\right)=1$,
(FAN2) for all $t \in \square$ with $t>0, N\left(x_{1}, \ldots, x_{n}, t\right)=1, x_{1}, \ldots, x_{n}$ are linearly dependent,
(FAN3) $N\left(x_{1}, \ldots, x_{n}, t\right)$ is invariant under any permutation of x_{1}, \ldots, x_{n},
(FAN4) $N\left(x_{1}, \ldots, c x_{n}, t\right)=N\left(x_{1}, \ldots, x_{n}, t /|c|\right)$ if $c=0, c \in F$,
(FAN5) $N\left(x_{1}, \ldots, x_{n}+x_{n}^{\prime}, s+t\right) \leq N\left(x_{1}, \ldots, x_{n}, s\right) \diamond N\left(x_{1}, \ldots, x_{n}^{\prime}, t\right)$ for all $s, t \in \square$,
(FAN6) $N\left(x_{1}, \ldots, x_{n},.\right)$ is a continuous and non-increasing function of \square such that

$$
\lim _{t \rightarrow \infty} N\left(x_{1}, \ldots, x_{n}, t\right)=0
$$

Then (X, N) is called a fuzzy anti n-normed linear space.
Definition 2.7 [27] A sequence $\left\{x_{n}\right\}$ in a fuzzy anti n-normed space (X, N) is said to converge to x if for given $r>0, t>0$ and $0<r<1$, there exists an integer $n_{0} \in \square$ such that $N\left(x_{1}, \ldots, x_{n-1}, x_{n}-x, t\right)<r$, for all $n \geq n_{0}$.
Example 2.1 [27] Let $(X,\|\bullet, \ldots, \bullet\|)$ be a n-normed linear space. Define,

$$
N\left(x_{1}, \ldots, x_{n}, t\right)=\left\{\begin{array}{cl}
1-\frac{t}{t+\left\|x_{1}, \ldots, x_{n}\right\|} & t>0, \forall x \in X, \\
1 & t \leq 0, \forall x \in X .
\end{array}\right.
$$

Then (X, N) is a fuzzy anti n-normed linear space.
Theorem 2.2 [27] Let (X, N) be a fuzzy anti n - normed space. Assume that condition that

$$
(F A N 7) \quad N\left(x_{1}, \ldots, x_{n}, t\right)>0, \forall t>0
$$

implies $\quad x_{1}, \ldots, x_{n}$ are linearly dependent. Define $\left\|x_{1}, \ldots, x_{n}\right\|_{\alpha}=\sup \left\{t: N\left(x_{1}, \ldots, x_{n}, t\right) \leq 1-\alpha\right\}, \alpha \in(0,1)$. Then $\left\{\|\bullet, \ldots, \bullet\|_{\alpha}: \alpha \in(0,1)\right\}$ is a descending family of n-normes on X. These n-norms are called $\alpha-n$ - norms on X correspending to the fuzzy anti n-norm on X.

Definition 2.8 [2] The fuzzy normed space (X, N) is said to be a fuzzy anti n-normed Banach space whenever X is complete with respect to the fuzzy metric induced by fuzzy anti n-norm.

3. FUZZY RIESZ THEOREM

Riesz [22] obtained the following theorem in a normed space.
Theorem 3.1 [22] Let Y and Z be subspaces of a normed space X, and Y a closed proper subset of Z. For each $\theta \in(0,1)$, there exists an element $z \in Z$ such that

$$
\|z\|=1, \quad\|z-y\| \geq \theta
$$

for all $y \in Y$.
Now we try to extend Riesz theorem to fuzzy anti n-normed linear spaces. Also, we prove some corollaries of this theorem at the end of this section.

Definition 3.1 A subset Y of a fuzzy anti n-normed linear space (X, N) is called a fuzzy n-compact subset if for every sequence $\left\{y_{n}\right\}$ in Y, there exists a subsequence $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n}\right\}$ which converges to an element $y \in Y$. In other words, given $t>0$ and $0<r<1$, there exists an integer $n_{0} \in \square$ such that

$$
N\left(y_{1}, \ldots, y_{n-1}, y_{n_{k}}-y, t / k\right)<r
$$

for all $n, k \geq n_{0}$ and $n_{k} \geq n_{0}$.
Lemma 3.1 Let (X, N) be a fuzzy anti n-normed linear space. Assume that $x_{i} \in X$ for each $i \in\{1, \ldots, n\}$ and $c \in F$.
Then

$$
N\left(x_{1}, \ldots, x_{j}+c x_{i}, \ldots, x_{n}, t\right)=N\left(x_{1}, \ldots x_{i}, \ldots, x_{j}, \ldots, x_{n}, t\right) .
$$

Proof.

$$
\begin{aligned}
N\left(x_{1}, \ldots, x_{j}+c x_{i}, \ldots, x_{n}, t\right) & =N\left(x_{1}, \ldots, x_{j}+c x_{i}, \ldots, x_{n}, t / 2+t / 2\right) \\
& \leq \max \left\{N\left(x_{1}, \ldots x_{i}, \ldots, x_{j}, \ldots, x_{n}, t / 2\right), N\left(x_{1}, \ldots x_{i}, \ldots, x_{j}, \ldots, x_{n}, t / 2\right)\right\} \\
& =\max \left\{N\left(x_{1}, \ldots x_{i}, \ldots, x_{j}, \ldots, x_{n}, t / 2\right), N\left(x_{1}, \ldots x_{i}, \ldots, x_{j}, \ldots, x_{n}, t /|c| 2\right)\right\},(|c|=1) \\
& =\max \left\{N\left(x_{1}, \ldots x_{i}, \ldots, x_{j}, \ldots, x_{n}, t / 2\right), N\left(x_{1}, \ldots x_{i}, \ldots, x_{j}, \ldots, x_{n}, t / 2\right)\right\} \\
& \geq N\left(x_{1}, \ldots x_{i}, \ldots, x_{j}, \ldots, x_{n}, t\right) .
\end{aligned}
$$

Theorem 3.2 Let (X, N) be a fuzzy anti n-normed linear space. If the

$$
\sup _{y \in Y}\left\{t>0: N\left(x_{1}-y, \ldots, x_{n}-y, t\right)\right\}=0,
$$

for $\left(x_{1}, \ldots, x_{n}\right) \in X_{n}$ and Y is a fuzzy n-compact subset of X, then there exists an element $y_{0} \in Y$ such that

$$
\left\{t>0: N\left(x_{1}-y_{0}, \ldots, x_{n}-y_{0}, t\right)\right\}=0
$$

Proof. Let $t>0$ and $\varepsilon \in(0,1)$. Choose $r \in(0,1)$ such that $r \diamond r<\varepsilon$ (remark 2.1). Since Y is a fuzzy n-compact subset of X, there exists an integer $n_{0} \in \square$ such that

$$
N\left(x_{1}-y_{k}, \ldots, x_{n}-y_{k}, c t\right)<r
$$

for all $n, k \geq n_{0}$ and a constant c. Since $\left\{y_{k}\right\}$ is a sequence in a fuzzy n - compact subset Y of X. Without loss of generality assume that $\left\{y_{k}\right\}$ converges to $y_{0} \in Y$, as $k \rightarrow \infty$. Then for given, $0<\lambda<1$, there exists an integer $n_{1} \in \square$ such that

$$
N\left(y_{k}-y_{0}, \omega_{2} \ldots, \omega_{n}, t\right)<\lambda,
$$

for all $\omega_{i} \in X(i=1, \ldots, n)$ and $n_{0}>n_{1}$. For every $r \in(0,1)$, there exists $\lambda \in(0,1)$ such that (remark 2.1)

$$
\overbrace{\lambda \diamond \lambda \Delta \ldots \lambda}^{n}<r,
$$

by lemma 3.1, if $n_{0}>n_{1}$, then we have

$$
\begin{aligned}
N\left(x_{1}-y_{0}, x_{2}-y_{0}, \ldots, x_{n}-y_{0}, t\right) & \leq N\left(y_{k}-y_{0}, x_{2}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{0}, \ldots, x_{n}-y_{0},(k-1) t / k\right) \\
& \leq N\left(y_{k}-y_{0}, x_{2}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, y_{k}-y_{0}, x_{3}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, x_{3}-y_{0}, \ldots, x_{n}-y_{0},(k-2) t / k\right) \\
& \leq N\left(y_{k}-y_{0}, x_{2}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, y_{k}-y_{0}, x_{3}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, y_{k}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, x_{3}-y_{k}, \ldots, x_{n}-y_{0},(k-3) t / k\right) \\
& \leq N\left(y_{k}-y_{0}, x_{2}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, y_{k}-y_{0}, x_{3}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, y_{k}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond \ldots \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, x_{3}-y_{k}, \ldots, y_{k}-y_{0}, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, x_{3}-y_{k}, \ldots, x_{n-1}-y_{k}, x_{n}-y_{0},(k-(n-1)) t / k\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
N\left(x_{1}-y_{0}, x_{2}-y_{0}, \ldots, x_{n}-y_{0}, t\right) \leq & N\left(y_{k}-y_{0}, x_{2}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, y_{k}-y_{0}, x_{3}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, y_{k}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond \cdots \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, x_{3}-y_{k}, \ldots, y_{k}-y_{0}, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, x_{3}-y_{k}, \ldots, x_{n-1}-y_{k}, y_{k}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, x_{3}-y_{k}, \ldots, x_{n-1}-y_{k}, x_{n}-y_{k},(k-n) t / k\right) \\
& =N\left(y_{k}-y_{0}, x_{2}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{0}, y_{k}-y_{0}, x_{3}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{0}, x_{2}-y_{0}, y_{k}-y_{0}, \ldots, x_{n}-y_{0}, t / k\right) \\
& \diamond \cdots \\
& \diamond N\left(x_{1}-y_{0}, x_{2}-y_{0}, x_{3}-y_{0}, \ldots, y_{k}-y_{0}, x_{n}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{0}, y_{k}-y_{0}, x_{3}-y_{0}, \ldots, x_{n-1}-y_{0}, y_{k}-y_{0}, t / k\right) \\
& \diamond N\left(x_{1}-y_{k}, x_{2}-y_{k}, x_{3}-y_{k}, \ldots, x_{n-1}-y_{k}, x_{n}-y_{k}, c t\right) \\
& <\overbrace{\lambda \diamond \lambda \diamond \ldots, \lambda \diamond r}^{n}
\end{aligned}
$$

$$
<r \diamond r<\varepsilon
$$

Since ε is arbitrary,

$$
\sup \left\{t>0: N\left(x_{1}-y_{0}, x_{2}-y_{0}, \ldots, x_{n}-y_{0}, t\right)\right\}=0
$$

Now, we reperesent Riesz Theorem for fuzzy anti n-normed linear spaces.

Theorem 3.3 Riesz Theorem. Let (X, N) be a fuzzy anti n-normed linear space satisfying condition (FAN7) and $\left\{\|\bullet, \ldots, \bullet\|_{\alpha}: \alpha \in(0,1)\right\}$ be a descending family of α - n - norms corresponding to (X, N). Let Y and Z be subspaces of X and Y be a fuzzy n-compact proper subset of Z with $\operatorname{dim} Z \geq n$. For each $k \in(0,1)$, there exists an element $\left(z_{1}, \ldots, z_{n}\right) \in Z_{n}$ such that

$$
\left\|z_{1}, \ldots, z_{n}\right\|_{\alpha}=0, \quad N\left(z_{1}-y, \ldots, z_{n}-y, t\right) \geq \alpha
$$

for all $y \in Y$.
Proof. Let $\alpha \in(0,1),\left(v_{1}, \ldots, v_{n}\right) \in Z-Y$ with v_{1}, \ldots, v_{n} are linearly independent. Let

$$
\sup _{y \in Y}\left\|v_{1}-y, \ldots, v_{n}-y\right\|_{\alpha}=k
$$

We follow the proof in two cases:
Case (i): Assume that $k=0$. By theorem 3.2, there is an element $y_{0} \in Y$ such that $N\left(v_{1}-y_{0}, \ldots, v_{n}-y_{0}\right)=0$.
If $y_{0}=0$, then v_{1}, \ldots, v_{n} are linearly independent, which is a contradiction.
If $y_{0} \neq 0$, then v_{1}, \ldots, v_{n} are linearly independent.
Case (ii): Let $k>0$, where

$$
k=\left\|v_{1}-y, \ldots, v_{n}-y\right\|_{\alpha}=\sup \left\{s: N\left(v_{1}-y, \ldots, v_{n}-y, s\right) \leq \alpha\right\}
$$

Since $N\left(v_{1}-y, \ldots, v_{n}-y, s\right)$ is continuous (definition 2.6), now we have (by theorem 4.4, in [19]),

$$
N\left(v_{1}-y, \ldots, v_{n}-y, s\right) \leq 1-\alpha,
$$

So for each $k_{1} \in(0,1)$, there exists an element $y_{0} \in Y$ such that

$$
k \geq\left\|v_{1}-y_{0}, \ldots, v_{n}-y_{0}\right\|_{\alpha} \geq \frac{k}{k_{1}}
$$

For each $j=1, \ldots, n$, let

$$
z_{j}=\frac{v_{j}-y_{0}}{\left\|v_{1}-y_{0}, \ldots, v_{n}-y_{0}\right\|_{\alpha}^{\frac{1}{n}}} .
$$

Then it is obvious that $\left\|z_{1}, \ldots, z_{n}\right\|_{\alpha}=0$.
Now,

$$
\begin{aligned}
\left\|z_{1}-y_{0}, \ldots, z_{n}-y_{0}\right\|_{\alpha}= & \left\|\frac{v_{1}-y_{0}}{\left\|v_{1}-y_{0}, \ldots, v_{n}-y_{0}\right\|_{\alpha}^{\frac{1}{n}}}-y, \ldots, \frac{v_{n}-y_{0}}{\left\|v_{1}-y_{0}, \ldots, v_{n}-y_{0}\right\|_{\alpha}^{\frac{1}{n}}}-y\right\|_{\alpha} \\
= & \left\|\frac{1}{\left\|v_{1}-y_{0}, \ldots, v_{n}-y_{0}\right\|_{\alpha}}\right\| v_{1}-\left(y_{0}+y\left\|v_{1}-y_{0}, \ldots, v_{n}-y_{0}\right\|_{\alpha}^{\frac{1}{n}}, \ldots,\right. \\
& v_{n}-\left(y_{0}+y\left\|v_{1}-y_{0}, \ldots, v_{n}-y_{0}\right\|_{\alpha}^{\frac{1}{n}} \|\right.
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{1}{\left\|v_{1}-y_{0}, \ldots, v_{n}-y_{0}\right\|_{\alpha}} \\
& \leq \frac{k}{k / k_{1}} \\
& =k_{1},
\end{aligned}
$$

By (FAN7), there exists $\alpha \in(0,1)$ such that

$$
\sup \left\{k>0: N\left(z_{1}-y, \ldots, z_{n}-y, k\right) \leq 1-\alpha\right\} \leq k_{1}
$$

Then there exists $\alpha_{0} \in(0,1)$ such that

$$
N\left(z_{1}-y, \ldots, z_{n}-y, k_{1}\right)>\alpha_{0} \geq 1-\alpha,
$$

for all $y \in Y$.

Corollary 3.1 Given a strictly nested sequence of closed subspaces

$$
\{0\} Ø N_{1} Ø N_{2} Ø N_{3} Ø N_{4} Ø \ldots
$$

of a fuzzy Banach space X, one can find a sequence of vectors $x_{1}, \ldots, x_{n} \in N_{n}$ with $\left\|x_{1}, \ldots, x_{n}\right\|_{\alpha}=0$ and $N\left(x_{1}-N_{n-1}, \ldots, x_{n}-N_{n-1}\right) \geq \frac{1}{2}$. Similarly, for a sequence of closed subspaces nested in the opposite direction $\{0\}$ ப̀ R_{1} ப̀ R_{2} ப̀ R_{3} Ù R_{4} ப̀ \ldots, there are unit vectors $x_{n} \in R_{n}$ with $N\left(x_{1}-R_{n+1}, \ldots, x_{n}-R_{n+1}\right)>\frac{1}{2}$.
Proof. Pick any x_{1} of norm N_{1}. Let F_{1} be the linear span of x_{1}. Then F_{1} is finite dimensional and, hence, closed. By Riesz's Lema, there is an x_{2} of norm N_{1} such that $N\left(x_{1}-N_{n-1}, x_{2}-N_{n-1}\right) \geq \frac{1}{2}$. Let F_{2} be the linear span of x_{1} and x_{2}. Then F_{2} is finite dimensional and, hence, closed. By Riesz's Lemma, there is an x_{3} of norm N_{1} such that $N\left(x_{1}-N_{n-1}, x_{2}-N_{n-1}\right) \geq \frac{1}{2}$. Continue ...
The same corollary has been achieved in linear normed space as follows:
Corollary 3.2 Given a strictly nested sequence of closed subspaces

$$
\{0\} \varnothing N_{1} \varnothing N_{2} \varnothing N_{3} \varnothing N_{4} \varnothing \ldots
$$

of a Banach space X, one can find a sequence of vectors $x_{n} \in N_{n}$ with $\left\|x_{n}\right\|=1$ and dist $\left(x_{n}, N_{n-1}\right) \geq \frac{1}{2}$. Similarly, for a sequence of closed subspaces nested in the opposite direction, $\{0\} \grave{\mathrm{U}} R_{1} \grave{\mathrm{U}} R_{2} \grave{\mathrm{U}} \ldots$, there are unit vectors $x_{n} \in R_{n}$ with $\operatorname{dist}\left(x_{n}, R_{n-1}\right) \geq \frac{1}{2}$.

4. REFERENCES

[1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces , The Journal of Fuzzy Mathematics, 11 (2003), no. 3, 687-705.
[2] S. C. Cheng, J. N. Mordeson, Fuzzy linear operators and fuzzy normed spaces, Bull. Cal. Math. Soc. 86 (1994) 429-436.
[3] B. Dinda, T.K. Samanta and Iqbal, H. Jebril, Fuzzy anti-norm and fuzzy a- anti- convergence, arXiv preprint arXiv:1002.3818 (2010).
[4] B. Dinda, T.K. Samanta and Iqbal, H. Jebril, Fuzzy anti- bounded linear operator, Stud. Univ. Babes- Bolyen, Math, 56 (2011), No. 4, 123-137.
[5] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Syst, 48 (1992), 239-248.
[6] S. Gahler, Unter Suchyngen Uber Veralla gemeinerte m-metrische Raume I , Math. Nachr., 40 (1969), 165-189.
[7] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math and Math. Sci., 27 (2001), No. 10, 631-639.
[8] J. R. Smith Complement of codimention - two submanifolds - III- cobordism theory, pacific Journal of mathematical, Vol 94, No. 2, (1981), 423-484.
[9] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Syst. 12 (1984), 143-154.
[10] J. Kavikumar, Y. B. jun and A. khamis, The Riesz theorem in fuzzy n-normed linear spaces, J. Appl. Math. And Informatics, 27 (2009), No. 3-4, pp. 541-555.
[11] S. S. Kim and Y. J. Cho,Strict convexity in linear n-normed spaces , DemonstratioMath., 29 (1996), No. 4, 739-744.
[12] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Monthly, 72 (1965), 1004-1006.
[13] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica. 11 (1975), 326-334.
[14] S. V. Krishna and K. K. M. Sarma,Separation of fuzzy normed linear spaces , Fuzzy Sets Syst, 40 (1969), 165-189.
[15] Kuldip Raj, Sunil K. Sharma and Ajay K. Sharma, Difference sequence spaces in n-normed spaces defined by Musielak-Orlicz function, Armenian Journal of mathematics, Vol 3, No 3, (2010), 127-141.
[16] I. H. Jebril and S. K. Samanta,Fuzzy anti-normed linear space, J. math. and Tech, February, pp. 66-77, 2010.
[17] R. Malceski,Strong n-convex n-normed spaces , Mat. Bilten, 21 (1997), no. 47, 81-102.
[18] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
[19] AL. Narayanan and S. Vijayabalaji,Fuzzy n-normed linear space, Int. J. Math. and Math. Sci., (2005), no. 24, 3963-3977.
[20] C. Park and H. Y. Chu,The Riesz theorem in linear n-normed spaces, Journal of the Chungcheong Math. Soc., 19 (2006), no. 2, 207-211.
[21] G. S. Rhie, B. M. Choi and S. K. Dong,On the completeness of fuzzy normed linear spaces, Math. Japonica, 45 (1997), no. 1, 33-37.
[22] F. Riesz,Uber lineare Funktionalgleichungen , ActaMath, 41 (1918), 71 - 98.
[23] J. Schauder, Der Fixpunktsatz in Funktionalraumen, Studia Math. 2 (1930) 171-180.
[24] B. Schweizer and A. Sklar,Statistical metric spaces , Pacific J. Math., 10 (1960), 314-334.
[25] B. Surender Reddy ,Fuzzy Anti-2-Normed Linear Space, Journal of Mathematics Research, Vol. 3, No. 2, May (2011).
[26] L. A. Zadeh, Fuzzy set, Information and Control, 8 (1965), pp. 338-353.
[27] S. Vijayabalaji and N. Thillaigovindan,Complete fuzzy n-normed linear space, Journal of Fund. Sci., 3 (2007), 119-126.

