The Extended Riesz Theorem and its Results

Authors

  • Hamid Reza Goudarzi Faculty member of Yasouj University
  • Atefe Jaberi

Keywords:

Riesz theorem, Fuzzy n-compact sets, Fuzzy anti n-norms, α n-norms.

Abstract

The main purpose of this paper is to extended the Riesz theorem in fuzzy anti n-normed linear spaces as a generalization of linear n-normed space. Also we study some properties of fuzzy anti n-normed linear spaces.

 

References

T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces , The Journal of Fuzzy Mathematics,

(2003), no. 3, 687 - 705.

S. C. Cheng, J. N. Mordeson, Fuzzy linear operators and fuzzy normed spaces, Bull. Cal. Math. Soc. 86 (1994)

-436.

B. Dinda, T.K. Samanta and Iqbal, H. Jebril, Fuzzy anti-norm and fuzzy a- anti- convergence, arXiv preprint

arXiv:1002.3818 (2010).

B. Dinda, T.K. Samanta and Iqbal, H. Jebril, Fuzzy anti- bounded linear operator, Stud. Univ. Babes- Bolyen,

Math, 56 (2011), No. 4, 123-137.

C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Syst, 48 (1992), 239-248.

S. Gahler, Unter Suchyngen Uber Veralla gemeinerte m-metrische Raume I , Math. Nachr., 40 (1969), 165 - 189.

H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math and Math. Sci., 27 (2001), No. 10, 631 - 639.

J. R. Smith Complement of codimention - two submanifolds - III- cobordism theory, pacific Journal of mathematical, Vol 94, No. 2, (1981), 423 - 484.

A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Syst. 12 (1984), 143-154.

J. Kavikumar, Y. B. jun and A. khamis, The Riesz theorem in fuzzy n-normed linear spaces, J. Appl. Math. And Informatics , 27 (2009), No. 3 - 4, pp. 541 - 555. [11] S. S. Kim and Y. J. Cho,Strict convexity in linear n-normed spaces , DemonstratioMath., 29 (1996), No. 4, 739 -744.

W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Monthly, 72 (1965), 1004-1006.

I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica. 11 (1975), 326-334.

S. V. Krishna and K. K. M. Sarma,Separation of fuzzy normed linear spaces , Fuzzy Sets Syst, 40 (1969), 165 -189.

Kuldip Raj, Sunil K. Sharma and Ajay K. Sharma, Difference sequence spaces in n-normed spaces defined by Musielak-Orlicz function, Armenian Journal of mathematics, Vol 3, No 3, (2010), 127-141.

I. H. Jebril and S. K. Samanta,Fuzzy anti-normed linear space , J. math. and Tech, February, pp. 66-77, 2010. [17] R. Malceski,Strong n-convex n-normed spaces , Mat. Bilten, 21 (1997), no. 47, 81 - 102.

A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299 - 319.

AL. Narayanan and S. Vijayabalaji,Fuzzy n-normed linear space , Int. J. Math. and Math. Sci., (2005), no. 24, 3963 - 3977.

C. Park and H. Y. Chu,The Riesz theorem in linear n-normed spaces , Journal of the Chungcheong Math. Soc., 19 (2006), no. 2, 207 - 211.

G. S. Rhie, B. M. Choi and S. K. Dong,On the completeness of fuzzy normed linear spaces , Math. Japonica, 45 (1997), no. 1, 33 - 37.

F. Riesz,Uber lineare Funktionalgleichungen , ActaMath, 41 (1918), 71 - 98.

J. Schauder, Der Fixpunktsatz in Funktionalraumen, Studia Math. 2 (1930) 171-180.

B. Schweizer and A. Sklar,Statistical metric spaces , Pacific J. Math., 10 (1960), 314 - 334.

B. Surender Reddy ,Fuzzy Anti-2-Normed Linear Space, Journal of Mathematics Research, Vol. 3, No. 2, May (2011).

L. A. Zadeh, Fuzzy set, Information and Control, 8 (1965), pp. 338-353.

S. Vijayabalaji and N. Thillaigovindan,Complete fuzzy n-normed linear space , Journal of Fund. Sci., 3 (2007), 119 – 126.

Downloads

Published

2015-04-26

How to Cite

Goudarzi, H. R., & Jaberi, A. (2015). The Extended Riesz Theorem and its Results. Asian Journal of Fuzzy and Applied Mathematics, 3(2). Retrieved from https://ajouronline.com/index.php/AJFAM/article/view/2298

Issue

Section

Articles