On Minimal λ_c -Open Sets Alias B. Khalaf¹ and Sarhad Faiq Namiq² ¹ Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan-region, Iraq Corresponding author's email: aliasbkhalaf {at} gmail.com ² Department of Mathematics, Faculty of Education, University of Garmyan, Kurdistan-region, Iraq **ABSTRACT**— In this paper, we introduce and discuss minimal λ_{ε} -open sets in topological spaces. We establish some basic properties of minimal λ_{ε} -open. We obtain an application of a theory of minimal λ_{ε} -open sets and we defined a λ_{ε} -locally finite space. **Keywords**— λ -open sets, λ_{σ} -open sets, minimal λ_{σ} -open, s-regular operation. ## 1. INTRODUCTION The study of semi open sets in topological spaces was initiated by Levine [7]. The concept of operation γ was initiated by Kasahara [3]. He also introduced γ -closed graph of a function. Using this operation, Ogata [9] introduced the concept of γ -open sets and investigated the related topological properties of the associated topology τ_{γ} and τ . He further investigated general operator approaches of closed graph of mappings. Further Ahmad and Hussain [1] continued studying the properties of γ -open (γ -closed) sets. In 2009, Hussain and Ahmad [2], introduced the concept of minimal γ -open sets. In 2011[4] (resp., in 2013[6]) Khalaf and Namiq defined an operation λ called s-operation. They defined λ^* -open sets [8] which is equivalent to λ -open set [4] and λ_s - open set [6] by using s-operation. They defined λ_c -interior and λ_c -closure points in topological spaces. In this paper, we introduce and discuss minimal λ_c -open sets in topological spaces. We establish some basic properties of minimal λ_c -open sets and provide an example to illustrate that minimal λ_c -open sets are independent of minimal open sets First, we recall some definitions and results used in this paper. ## 2. PRELIMINARIES Throughout, X denotes a topological space. Let A be a subset of X, then the closure and the interior of A are denoted by Cl(A) and Int(A) respectively. A subset A of a topological space (X,τ) is said to be semi open [7] if $A \subseteq Cl(Int(A))$. The complement of a semi open set is said to be semi closed [7]. The family of all semi open (resp., semi closed) sets in a topological space (X,τ) is denoted by $SO(X,\tau)$ or SO(X) (resp. $SC(X,\tau)$ or SC(X)). We consider λ as a function defined on SO(X) into P(X) and $\lambda:SO(X) \to P(X)$ is called an s-operation if $V \subseteq \lambda(V)$ for each nonempty semi open set V. It is assumed that $\lambda(\phi) = \phi$ and $\lambda(X) = X$ for any s-operation λ . Let X be a topological space and $\lambda:SO(X) \to P(X)$ be an s-operation, then a subset A of X is called a λ^* -open set [8] which is equivalent to λ -open set [4] and λ_s -open set [6] if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$. The complement of a λ^* -open set is said to be λ^* -closed. The family of all λ^* -open (resp., λ^* -closed) subsets of a topological space (X,τ) is denoted by $SO_{\lambda}(X,\tau)$ or $SO_{\lambda}(X)$ (resp., $SC_{\lambda}(X,\tau)$ or $SC_{\lambda}(X)$). **Definition 2.1.** A λ^* -open [8] (λ -open [4], λ_s -open [6]) subset A of a topological space X is called λ_c -open [4] if for each $x \in A$ there exists a closed set F such that $x \in F \subseteq A$. The complement of a λ_c -open set is called λ_c -closed [4]. The family of all λ_c -open (resp., λ_c -closed) subsets of a topological space (X, τ) is denoted by $SO_{\lambda c}(X, \tau)$ or $SO_{\lambda c}(X)$ (resp. $SC_{\lambda c}(X, \tau)$ or $SC_{\lambda c}(X)$) [4]. The following definitions and results are in [4]. **Proposition 2.2.** For a topological space X, $SO_{\lambda_c}(X) \subseteq SO_{\lambda}(X) \subseteq SO(X)$. The following example shows that the converse of the above proposition may not be true in general. **Example 2.3.**Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, X\}$. We define an s-operation $\lambda : SO(X) \to P(X)$ as $\lambda(A) = A$ if $b \in A$ and $\lambda(A) = X$ otherwise. Here, we have $\{a, c\}$ is semi-open but it is not λ^* -open. And also $\{a, b\}$ is λ^* -open set but it is not λ_{c^*} open. **Definition 2.4.** An s-operation λ on X is said to be s-regular which is equivalent to λ -regular [6] if for every semi open sets U and V containing $x \in X$, there exists a semi open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$. **Definition 2.5.** Let A be a subset of X. Then: - (1) The λ_c -closure of A ($\lambda_c Cl(A)$) is the intersection of all λ_c -closed sets containing A. - (2) The λ_c -interior of A ($\lambda_c Int(A)$) is the union of all λ_c -open sets of X contained in A. **Proposition 2.6.** For each point $x \in X$, $x \in \lambda_c Cl(A)$ if and only if $V \cap A \neq \phi$ for every $V \in SO_{\lambda_c}(X)$ such that $x \in V$. **Proposition 2.7.** Let $\{A_{\alpha}\}_{\alpha\in I}$ be any collection of λ_{σ} -open sets in a topological space (X, τ) , then $\bigcup_{\alpha\in I} A_{\alpha}$ is a λ_{σ} -open set. **Proposition 2.8.** Let λ be an s-regular s-operation. If A and B are λ_c -open sets in X, then $A \cap B$ is also a λ_c -open set. The proof of the following two propositions are in [5]. **Proposition 2.9.**Let $\{A_{\alpha}\}_{\alpha \in I}$ be any collection of λ^* -open sets in a topological space (X, τ) , then $\bigcup_{\alpha \in I} A_{\alpha}$ is a λ^* -open set. **Proposition 2.10.** Let λ be s-regular operation. If A and B are λ^* -open sets in X, then $A \cap B$ is also λ^* -open. ## 3. MINIMAL λ_c -OPEN SETS **Definition 3.1.** Let X be a space and $A \subseteq X$ be a λ_{σ} -open set. Then A is called a minimal λ_{σ} -open set if ϕ and A are the only λ_{σ} -open subsets of A. **Example 3.2.** Let $X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation $\lambda : SO(X) \to P(X)$ as $\lambda(A) = A$ if $A = \{a, c\}$ and $\lambda(A) = X$ otherwise. The λ_c -open sets are ϕ , $\{a, c\}$ and X. We have $\{a, c\}$ is minimal λ_c -open set. **Proposition 3.3.** Let A be a nonempty λ_c -open subset of a space X. If $A \subseteq \lambda_c Cl(C)$, then $\lambda_c Cl(A) = \lambda_c Cl(C)$, for any nonempty subset C of A. **Proof.** For any nonempty subset C of A, we have $\lambda_c Cl(C) \subseteq \lambda_c Cl(A)$. On the other hand, by hypothesis we have $\lambda_c Cl(A) = \lambda_c Cl(A_c Cl(C)) = \lambda_c Cl(C)$ implies $\lambda_c Cl(A) \subseteq \lambda_c Cl(C)$. Therefore, $\lambda_c Cl(A) = \lambda_c Cl(C)$ for any nonempty subset C of A. **Proposition 3.4.** Let A be a nonempty λ_c -open subset of a space X. If $\lambda_c Cl(A) = \lambda_c Cl(C)$, for any nonempty subset C of A, then A is a minimal λ_c -open set. **Proof.** Suppose that A is not a minimal λ_c -open set. Then there exists a nonempty λ_c -open set B such that $B \subseteq A$ and hence there exists an element $x \in A$ such that $x \notin B$. Then we have $\lambda_c Cl(\{x\}) \subseteq X \setminus B$ implies that $\lambda_c Cl(\{x\}) = \lambda_c Cl(A)$. This contradiction proves the proposition **Remark 3.5.** In the remainder of this section we suppose that λ is an s-regular operation defined on a topological space χ **Proposition 3.6.** The following statements are true: - (1) If A is a minimal λ_c -open set and B a λ_c -open set. Then $A \cap B = \phi$ or $A \subseteq B$. - (2) If B and C are minimal λ_c -open sets. Then $B \cap C = \phi$ or B = C. **Proof.(1)** Let B be a λ_c -open set such that $A \cap B \neq \phi$. Since A is a minimal λ_c -open set and $A \cap B \subseteq A$, we have $A \cap B = A$. Therefore, $A \subseteq B$. (2) If $A \cap B \neq \phi$, then by (1), we have $B \subseteq C$ and $C \subseteq B$. Therefore, B = C. **Proposition 3.7.** Let A be a minimal λ_{c} -open set. If x is an element of A, then $A \subseteq B$ for any λ_{c} -open neighborhood B of x. **Proof.** Let *B* be a λ_c -open neighborhood of x such that $A \not\subset B$. Since where λ is s-regular operation, then $A \cap B$ is λ_c -open set such that $A \cap B \subseteq A$ and $A \cap B \neq \phi$. This contradicts our assumption that A is a minimal λ_c -open set. **Proposition 3.8.** Let A be a minimal λ_c -open set. Then for any element x of A, $A = \bigcap \{B: B \text{ is } \lambda_c\text{-open neighborhood of } x\}$. **Proof.** By Proposition 3.4, and the fact that A is λ_c -open neighborhood of x, we have $A \subseteq \bigcap \{B: B \text{ is } \lambda_c\text{-open neighborhood of } x\} \subseteq A$. Therefore, the result follows. **Proposition 3.9.** If A is a minimal λ_c -open set in X not containing the point x. Then for any λ_c -open neighborhood C of x, either $C \cap A = \phi$ or $A \subseteq C$. **Proof.** Since \mathcal{C} is a λ_c -open set, we have the result by Proposition 3.3. Corollary 3.10. If A is a minimal λ_c -open set in X not containing $x \in X$ such that $x \notin A$. If $A_x = \bigcap \{B : B \text{ is } \lambda_c\text{-open neighborhood of } x \}$. Then either $A_x \cap A = \phi$ or $A \subseteq A_x$. **Proof.** If $A \subseteq B$ for any λ_c -open neighborhood B of x, then $A \subseteq \bigcap \{B : B \text{ is } \lambda_c$ -open neighborhood of $x \}$. Therefore, $A \subseteq A_x$. Otherwise, there exists a λ_c -open neighborhood B of x such that $B \cap A = \phi$. Then we have $A_x \cap A = \phi$. Corollary 3.11. If A is a nonempty minimal λ_c -open set of X, then for a nonempty subset C of A, we have $A \subseteq \lambda_c Cl(C)$. **Proof.** Let C be any nonempty subset of A. Let $Y \in A$ and B be any λ_c -open neighborhood of Y. By Proposition 3.4, we have $A \subseteq B$ and $C = A \cap C \subseteq B \cap C$. Thus, $B \cap C \neq \phi$ and hence $Y \in A$ and $Y \in Cl(C)$. This implies that $Y \in Cl(C)$. Hence the proof. Combining Corollary 3.11 and Propositions 3.3 and 3.4, we have: **Theorem 3.11.**Let A be a nonempty λ_{e^-} open subset of space X. Then the following are equivalent: - (1) A is minimal λ_c -open set, where λ is s-regular. - (2) For any nonempty subset C of $A, A \subseteq \lambda_c Cl(C)$. - (3) For any nonempty subset C of A, $\lambda_c Cl(A) = \lambda_c Cl(C)$. # 4. FINITE ¹/_c-OPEN SETS In this section, we study some properties of minimal λ_c -open sets in finite λ_c -open sets and λ_c -locally finite spaces. **Proposition 4.1.** Let $B \neq \phi$ be a finite λ_c -open set in a topological space X. Then, there exists at least one (finite) minimal λ_c -open set A such that $A \subseteq B$. **Proof.** Suppose that B is a finite λ_c -open set in X. Then, we have the following two possibilities: - (1) B is a minimal λ_c -open set. - (2) B is not a minimal λ_c -open set. In case (1), if we choose B = A, then the proposition is proved. If the case (2) is true, then there exists a nonempty (finite) λ_c -open set B_1 which is properly contained in B. If B_1 is minimal λ_c -open, we take $A = B_1$. If B_1 is not a minimal λ_c -open set, then there exists a nonempty (finite) λ_c -open set B_2 such that $B_2 \subseteq B_1 \subseteq B$. We continue this process and have a sequence of λ_c -open ... $\subseteq B_m \subseteq \cdots \subseteq B_2 \subseteq B_1 \subseteq B$. Since B is finite, this process will end in a finite number of steps. That is, for some natural number k, we have a minimal λ_c -open set B_k such that $B_k = A$. This completes the proof. **Definition 4.2.** A space X is said to be a λ_c -locally finite space, if for each $x \in X$ there exists a finite λ_c -open set A in X such that $x \in A$. Corollary 4.3. Let X be a λ_c -locally finite space and B a nonempty λ_c -open set. Then there exists at least one (finite) minimal λ_c -open set A such that $A \subseteq B$, where λ is s-regular. **Proof.** Since B is a nonempty set, there exists an element x of B. Since X is a λ_c -locally finite space, we have a finite λ_c -open set B_x such that $x \in B_x$. Since $B \cap B_x$ is a finite λ_c -open set, so by Proposition 4.1, we get a minimal λ_c -open set A such that $A \subseteq B \cap B_x \subseteq B$. **Proposition** 4.4. Let X be a space and for any $\alpha \in I$, B_{α} a λ_c -open set and $\phi \neq A$ a finite λ_c -open set. Then $A \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a finite λ_c -open set, where λ is s-regular. Asian Online Journals (www.ajouronline.com) **Proof.** We see that there exists an integer n such that $A \cap (\bigcap_{\alpha \in I} B_{\alpha}) = A \cap (\bigcap_{i=1}^{n} B_{\alpha i})$ and hence we have the result. Using Proposition 4.4, we can prove the following: **Theorem 4.5.** Let X be a space and for any $\alpha \in I$, B_{α} is a λ_{c} -open set and for any $\beta \in J$, B_{β} is a nonempty finite λ_{c} -open set. Then, $(\bigcup_{\beta \in I} B_{\beta}) \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a λ_{c} open set, where λ is s-regular. ## 5. MORE PROPERTIES Let *A* be a nonempty finite λ_c -open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if λ is s-regular, then there exists a natural number m such that $\{A_1, A_2, \dots, A_m\}$ is the class of all minimal λ_c -open sets in A satisfying the following two conditions: - (1) For any ι , n with $1 \le \iota$, $n \le m$ and $\iota \ne n$, $A_{\iota} \cap A_n = \phi$. - (2) If C is a minimal λ_c -open set in A, then there exists ι with $1 \le \iota \le m$ such that $C = A_{\iota}$. **Theorem 5.1.** Let X be a space and $\phi \neq A$ a finite λ_c -open set such that A is not a minimal λ_c -open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal λ_c -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Define $A_y = \bigcap \{B: B \text{ is } \lambda_c$ -open neighborhood of $x\}$. Then there exists a natural number $k \in \{1, 2, 3, ..., m\}$ such that A_k is contained in A_y , where λ is s-regular. **Proof.** Suppose on the contrary, that for any natural number $k \in \{1,2,3,...,m\}$, A_k is not contained in A_y . By Corollary 3.7, for any minimal λ_c -open set A_k in A, $A_k \cap A_y = \phi$. By Proposition 4.4, $\phi \neq A_y$ is a finite λ_c -open set. Therefore, by Proposition 4.1, there exists a minimal λ_c -open set C such that $C \subseteq A_y$. Since $C \subseteq A_y \subseteq A$, we have C is a minimal λ_c -open set in A. By supposition, for any minimal λ_c -open set A_k , we have $A_k \cap C \subseteq A_k \cap A_y = \phi$. Therefore, for any natural number $k \in \{1,2,3,...,m\}$, $C \neq A_k$. This contradicts our assumption. Hence the proof. **Proposition 5.2.** Let X be a space and $\phi \neq A$ be a finite λ_c -open set which is not a minimal λ_c -open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal λ_c -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, 3, ..., m\}$ such that for any λ_c -open neighborhood B_y of y, A_k is contained in B_y , where λ is s-regular. **Proof.** This follows from Theorem 5.1, as $\bigcap \{B: B \text{ is } \lambda_c\text{-open of } y\} \subseteq B_y$. **Theorem 5.3.** Let X be a space and $\phi \neq A$ be a finite λ_c -open set which is not a minimal λ_c -open set. Let $\{A_1, A_2, ..., A_m\}$ be the class of all minimal λ_c -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1,2,3,...,m\}$, such that $y \in \lambda_c Cl(A_k)$, where λ is s-regular. **Proof.** Follows from Proposition 5.2, that there exists a natural number $k \in \{1, 2, 3, ..., m\}$ such that $A_k \subseteq B$ for any λ_c -open neighborhood B of y. Therefore, $\phi \neq A_k \cap A_k \subseteq A_k \cap B$ implies $y \in \lambda_c Cl(A_k)$. This completes the proof. **Proposition 5.4.** Let $\phi \neq A$ be a finite λ_c -open set in a space X and for each $k \in \{1, 2, 3, ..., m\}$, A_k is a minimal λ_c -open sets in A. If the class $\{A_1, A_2, ..., A_m\}$ contains all minimal λ_c -open sets in A, then for any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda_c Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, where λ is s-regular. **Proof.** If A is a minimal λ_c -open set, then this is the result of Theorem 3.11 (2). Otherwise, when A is not a minimal λ_c -open set. If x is any element of $A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$, then by Theorem 5.3, $x \in \lambda_c Cl(A_1) \cup \lambda_c Cl(A_2) \cup ... \cup \lambda_c Cl(A_m)$. Therefore, by Theorem 3.11 (3), we obtain that $A \subseteq \lambda_c Cl(A_1) \cup \lambda_c Cl(A_2) \cup ... \cup \lambda_c Cl(A_m) = \lambda_c Cl(B_1) \cup \lambda_c Cl(B_2) \cup ... \cup \lambda_c Cl(B_m) = \lambda_c Cl(B_1) \cup B_2 \cup B_3 \cup ... \cup B_m$. **Proposition 5.5.** Let $\phi \neq A$ be a finite λ_c -open set and A_k is a minimal λ_c -open set in A, for each $k \in \{1, 2, 3, ..., m\}$. If for any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda_c Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$ then $\lambda_c Cl(A) = \lambda_c Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. **Proof.** For any $\phi \neq B_k \subseteq A_k$ with $k \in \{1,2,3,...,m\}$, we have $\lambda_c Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \subseteq \lambda_c Cl(A)$. Also, we have $\lambda_c Cl(A) \subseteq \lambda_c Cl(B_1) \cup \lambda_c Cl(B_2) \cup ... \cup \lambda_c Cl(B_m) = \lambda_c Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. Therefore, $\lambda_c Cl(A) = \lambda_c Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$ for any nonempty subset $B_k \circ fA_k$ with $k \in \{1, 2, 3, ..., m\}$. **Proposition 5.6.** Let $\phi \neq A$ be a finite λ_c -open set and for each $k \in \{1,2,3,...,m\}$, A_k is a minimal λ_c -open set in A. If for any $\phi \neq B_k \subseteq A_k$, $\lambda_c Cl(A) = \lambda_c Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, then the class $\{A_1, A_2, ..., A_m\}$ contains all minimal λ_c -open sets in A. **Proof.** Suppose that C is a minimal λ_c -open set in A and $C \neq A_k$ for $k \in \{1,2,3,...,m\}$. Then, we have $C \cap \lambda_c Cl(A_k) = \phi$ for each $k \in \{1,2,3,...,m\}$. It follows that any element of C is not contained in $\lambda_c Cl(A_1 \cup A_2 \cup ... \cup A_m)$. This is a contradiction to the fact that $C \subseteq A \subseteq \lambda_c Cl(A) = \lambda_c Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. This completes the proof. Combining Propositions 5.4, 5.5 and 5.6, we have the following theorem: **Theorem 5.7.** Let A be a nonempty finite λ_c -open set and A_k a minimal λ_c -open set in A for each $k \in \{1,2,3,...,m\}$. Then the following three conditions are equivalent: (1) The class $\{A_1, A_2, \dots, A_m\}$ contains all minimal λ_c -open sets in A. - (2) For any φ ≠ B_k ⊆ A_k, A ⊆ λ_cCl(B₁ ∪ B₂ ∪ B₃ ∪ ... ∪ B_m). (3) For any φ ≠ B_k ⊆ A_k, λ_cCl(A) = λ_cCl(B₁ ∪ B₂ ∪ B₃ ∪ ... ∪ B_m), where λ is s-regular. # **REFERENCES** - [1] B. Ahmad and S. Hussain: Properties of y-Operations on Topological Spaces, Aligarh Bull.Math. 22(1) (2003), 45-51. - [2] S. Hussain and B. Ahmad: On Minimal y-Open Sets, Eur. J. Pure Appl. Maths., 2(3)(2009),338-351. - [3] S. Kasahara: Operation-Compact Spaces, Math. Japon., 24(1979), 97-105. - [4] A. B. Khalaf and S. F. Namiq, New types of continuity and separation axiom based operation in topological spaces, M. Sc. Thesis, University of Sulaimani (2011). - [5] A. B.Khalaf and S. F. Namiq, Generalized λ -Closed Sets and $(\lambda, \gamma)^*$ -Continuous Functions, International Journal of Scientific & Engineering Research, 3(12), (2012), ISSN 2229-5518. - [6] A. B. Khalaf and S. F. Namiq, λ_c -Open Sets and λ_c -Separation Axioms in Topological Spaces, Journal of Advanced Studies in Topology, 4(1), (2013), 150-158. - [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math.Monthly, 70 (1)(1963), 36- - [8] S. F.Namiq, $\lambda^* R_0$ and $\lambda^* R_1$ Spaces, Journal of Garmyan University, 4(3), (2014), ISSN 2310-0087. - [9] H. Ogata: Operations on Topological Spaces and Associated Topology, Math. Japon., 36(1)(1991), 175-184.