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Abstract

In this article, the homotopy analysis method is applied to solve nonlinear fractional partial differential equations.
Based on the homotopy analysis method, a scheme is developed to obtain the approximate solution of the nonlinear
fractional heat conduction, Kaup–Kupershmidt, Fisher and Huxley equations with initial conditions, introduced by
replacing some integer-order time derivatives by fractional derivatives. The solutions of the studied models are calcu-
lated in the form of convergent series with easily computable components. The results of applying this procedure to
the studied cases show the high accuracy and efficiency of the new technique. The fractional derivative is described
in the Caputo sense. Some illustrative examples are presented to observe some computational results.

Keywords: Analytical solution; Nonlinear fractional heat conduction, Kaup-Kupershmidt, Fisher, Huxley; Fractional
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1Introduction

The concept of the differentiation operator D = d/dx is familiar with all who have studied the elementary
calculus. And for suitable functions f, the nth derivative of f, namely Dnf(x) = dnf(x)/dxn is well defined–
provided that n is a positive integer. In 1695 L’Hôpital inquired Leibniz what meaning could be ascribed
to Dnf(x) if n were a fraction. But it was not until 1884 that the theory of generalized operators achieved
a level in its development suitable as a point of departure for the modern mathematician. By then the
theory had been extended to include operators Dν , where ν could be rational or irrational, positive or
negative, real or complex [1]. Leibniz, Euler, Laplace, Lacroix and Fourier made mention of derivatives of
arbitrary order, but the first use of fractional operations was made by Niels Henrik Abel in 1823. Abel
applied the fractional calculus in the solution of the tautochrone problem [1]. Perhaps the first serious
attempt to give a logical definition of a fractional derivative is due to Liouville; he published nine papers
on the subject between 1832 and 1837, the last in the field in 1855. In recent years, the fractional calculus
has been found that derivatives of non–integer order are very effective for the description of many physical
phenomena such as damping laws and diffusion process [1, 2, 3, 4, 5]. Some fundamental works on various
aspects of the fractional calculus are given by Caputo [6], Debanth [7], Jafari and Seifi [8], Kemple and
Beyer [9], Kilbas and Trujillo [10], Momani and Shawagfeh [11], Oldham and Spanier [12], etc. Several
methods have been used to solve fractional partial differential equations, such as Laplace transform method,
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Fourier transform method [9], Adomian’s decomposition method [11], homotopy analysis method [13] and
so on. A substantial amount of research work has been directed to the study of the nonlinear fractional heat
conduction, Kaup–Kupershmidt, Fisher and Huxley equations given by

Dα
t u− au3

xx − u + u3 = 0, 0 < α ≤ 1, (1.1)

Dα
t u + uxxxxx + 45u2ux −

75
2

uxuxx − 15uuxxx = 0, 0 < α ≤ 1, (1.2)

Dα
t u− uxx − u + u2 = 0, 0 < α ≤ 1, (1.3)

and
Dα

t u− uxx + u− 2u2 + u3 = 0, 0 < α ≤ 1, (1.4)

respectively. Authors of [13] have applied homotopy analysis method for solving nonlinear fractional partial
differential equations. Wazwaz [20] has investigated exact solitary solutions for the nonlinear equation of heat
conduction in two dimensions. Babolian et. al [21] have obtained analytic approximate solutions to a class of
nonlinear PDEs such as Burgers, Fisher, Huxley equations and two combined forms of these equations using
the homotopy analysis method. Analytic study on Burgers, Fisher, Huxley equations and combined forms
of these equations with the tanh-coth method is used to determine these sets of travelling wave solutions
by Wazwaz [22]. Öziş et. al [23] has applied Exp-function method for solving the Fisher equation. In this
work, the homotopy analysis method developed by Liao in [25] will be used to conduct an analytic study on
the nonlinear fractional heat conduction, Kaup–Kupershmidt, Fisher, Huxley, Burgers–Fisher and Burgers–
Huxley equations. Also, homotopy analysis method has successfully applied to partial differential equations
and extended by authors [8, 14, 16, 36, 37] to solve different types of nonlinear partial differential equations.
This method gives rapidly convergent successive approximations of the exact solution if such a solution
exist, or else the approximations can be used for numerical purposes. The homotopy analysis method, a
new analytic technique is proposed to solve nonlinear partial differential equations with fractional order.
The HAM is useful to obtain exact and approximate solutions of nonlinear partial differential equations.
The current paper is organized as follows: In Section 2, we describe basic definitions. In Section 3, the
homotopy analysis method will be introduced briefly and this technique will be applied to solve fractional
partial differential equations. Section 4 contains some test problems to show the efficiency and accuracy of
the new method. In addition, a conclusion is given in Section 5. Finally some references are given at the
end of this paper.

2 Basic definitions

In this section, we give some definitions and properties of the fractional calculus [3].

Definition 1. A real function f(t), t > 0, is said to be in the space Cµ, µ ∈ R, if there exists a real number
p > µ, such that f(t) = tpf1(t), where f1(t) ∈ C(0,∞), and it is said to be in the space Cn

µ, if and only if
f(n) ∈ Cµ, n ∈ N [3].
Definition 2. The Riemann-Liouville fractional integral operator (Jα) of order α ≥ 0, of a function
f ∈ Cλ, λ ≥ −1, is defined as [3]

Jαf(t) = D−αf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ, (α > 0), J0f(t) = f(t), (2.1)

where Γ(z) is the well-known Gamma function. Some of the properties of the operator (Jα), which we will
need later, are given in the following:
For f ∈ Cλ, λ ≥ −1, α, β ≥ 0 and γ ≥ −1:

(1)JαJβf(t) = Jα+βf(t), (2)JαJβf(t) = JβJαf(t), (3)Jαtγ =
Γ(γ + 1)
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Definition 3. The fractional derivative (Dα) of f(t) in the Caputo’s sense is defined as [3]

Dαf(t) =
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1f(n)(τ)dτ, (α > 0), (2.2)

for n− 1 < α ≤ n, n ∈ N, t > 0 , f ∈ Cn
−1. The following are two basic properties of the Caputo’s fractional

derivative [6]:

(1) Let f ∈ Cn
−1, n ∈ N. Then Dαf, 0 ≤ α ≤ n, is well defined and Dαf ∈ C−1.

(2) Let n− 1 < α ≤ n, n ∈ N and f ∈ Cn
λ, λ ≥ −1. Then

(JαDα)f(t) = f(t)−
n−1∑
k=0

fk(0+)
tk

k!
. (2.3)

In this paper only real and positive α will be considered. Similar to integer-order differentiation, Caputo’s
fractional differentiation is a linear operation [36, 37]

Dα(λf(t) + µg(t)) = λDαf(t) + µDαg(t), (2.4)

in which λ, µ are constants, and satisfy the so-called Leibnitz rule

Dα
(
f(t)g(t)

)
=

∞∑
k=0

(
α
k

)
g(k)(t)Dα−kf(t), (2.5)

if f(τ) is continuous in [0, t] and g(τ) has (n + 1) continuous derivatives in [0, t].
Definition 4. For n to be the smallest integer that exceeds α, the Caputo time-fractional derivative
operator of order α > 0, is defined as [3, 36, 37]

Dα
t u(x, t) =

∂αu(x, t)
∂tα

=


1

Γ(n−α)

∫ t
0

(
t− τ)n−α−1 ∂nu(x,τ)

∂τn dτ, if n− 1 < α < n,

∂nu(x,t)
∂tn , if α = n ∈ N.

(2.6)

For more information on the mathematical properties of fractional derivatives and integrals one may refer
to [3, 6].

3The homotopy analysis method

In this paper, we use the homotopy analysis method to solve the problem described in Section 1. This
method proposed by a Chinese mathematician J.S. Liao [25]. We apply Liao’s basic ideas to the nonlinear
fractional partial differential equations. Let us consider the nonlinear fractional partial differential equation

NFD(u(x, t)) = 0, (3.1)

where NFD is a nonlinear fractional partial differential operator, x and t denote independent variables and
u(x, t) is an unknown function. For simplicity, we ignore all boundary or initial conditions, which can be
treated in the same way. Based on the constructed zero-order deformation equation by Liao [27], we give
the following zero-order deformation equation in the similar way

(1− q)L[v(x, t; q)− u0(x, t)] = qhNFD[v(x, t; q)], (3.2)

where q ∈ [0, 1] is the embedding parameter, h is a nonzero auxiliary parameter, L is an auxiliary linear
non-integer order operator and it possesses the property L(C) = 0, u0(x, t) is an initial guess of u(x, t),

3
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v(x, t; q) is an unknown function on independent variables x, t, q. It is important to know that one has great
freedom to choose auxiliary parameter h in HAM. The q = 0 and q = 1, give respectively

v(x, t; 0) = u0(x, t), v(x, t; 1) = u(x, t). (3.3)

Thus as q increases from 0 to 1, the solution v(x, t; q) varies from the initial guess u0(x, t) to the solution
u(x, t). Expanding v(x, t; q) in Taylor series with respect to q, one has

v(x, t; q) = u0(x, t) +
∞∑

m=1

um(x, t)qm, (3.4)

where

um(x, t) =
1
m!

∂mv(x, t; q)
∂qm

∣∣∣∣
q=0

. (3.5)

If the auxiliary linear non-integer order operator, the initial guess, and the auxiliary parameter h are so
properly chosen, the series Eq. (3.4), converges at q = 1. Hence we have

u(x, t) = u0(x, t) +
∞∑

m=1

um(x, t), (3.6)

which must be one of the solution of the original nonlinear equation, as proved by [27]. As h = −1, Eq.
(3.2) becomes

(1− q)L[v(x, t; q)− u0(x, t)] + qNFDv(x, t; q) = 0, (3.7)

which is used mostly in the homotopy perturbation method (HPM). Thus, HPM is a special case of HAM.
According to Eq. (3.4), the governing equation can be deduced from the zero-order deformation Eq. (3.2).
Define the vector

−→u n(x, t) = {u0(x, t),u1(x, t), ...,un(x, t)}. (3.8)

Differentiating Eq. (3.2), m times with respect to the embedding parameter q and then setting q = 0 and
finally dividing them by m!, we have the so-called mth-order deformation equation

L[um(x, t)− χmum−1(x, t)] = hNFR(−→u m−1(x, t)), (3.9)

where

NFR(−→u m−1(x, t)) =
1

(m− 1)!
∂m−1NFD

(−→v (x, t; q)
)

∂qm−1

∣∣∣∣∣
q=0

, (3.10)

and

χm =
{

0, m ≤ 1,
1, m > 1.

(3.11)

Finally, for the purpose of computation, we will approximate the HAM solution Eq. (3.6) by the following
truncated series:

φm =
m−1∑
k=0

uk(x, t). (3.12)

The mth-order deformation Eq. (3.9), is linear and thus can be easily solved, especially by means of a
symbolic computation software such as Mathematica, Maple, Matlab, Maxima and so on.

4
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4 Illustrative examples

In this section, we present several examples to illustrate the applicability of HAM to solve non-linear partial
differential equations introduced in Section 1.
Example 1: Consider the time-dependent one dimensional heat conduction equation [20] as
follows:

Dα
t u(x, t)− a(u3)xx(x, t)− u(x, t) + u3(x, t) = 0, u(x, 0) = exp

(
x

3
√

a

)
, 0 < α ≤ 1. (4.1)

To solve the general homogeneous nonlinear equation with the HAM, we choose the linear non-integer order
operator in the form

L[v(x, t; q)] = Dα
t v(x, t; q). (4.2)

Furthermore, Eq. (4.1), suggests to define the nonlinear fractional partial differential operator as follows:

NFD[v(x, t; q)] = Dα
t v(x, t; q)− a(v3)xx(x, t; q)− v(x, t; q) + v3(x, t; q). (4.3)

Using the above definition, we construct the zeroth-order deformation equation

(1− q)L[v(x, t; q)− u0(x, t)] = qhNFDv(x, t; q). (4.4)

Obviously, when q = 0 and q = 1 respectively, we get

v(x, t; 0) = u0(x, t) = u(x, 0), v(x, t; 1) = u(x, t). (4.5)

According to Eqs. (3.9)–(3.11), we gain the mth-order deformation equation

L[um(x, t)− χmum−1(x, t)] = hNFR(−→u m−1(x, t)), (4.6)

where

NFR(−→u m−1(x, t)) = Dα
t um−1(x, t)− a

m−1∑
i=0

i∑
k=0

(ukui−kum−1−i)xx(x, t) (4.7)

−um−1(x, t) +
m−1∑
i=0

i∑
k=0

(ukui−kum−1−i)(x, t).

Now the solution of Eq. (4.6), for m ≥ 1 becomes

um(x, t) = χmum−1(x, t) + hL−1NFR[−→u m−1(x, t)]. (4.8)

From Eqs. (4.1), (4.5) and (4.8), we now successively obtain

u0(x, t) = u(x, 0) = exp
(

x
3
√

a

)
, (4.9)

u1(x, t) = hD−α
t

[
Dα

t u0 − a(u3
0)xx − u0 + u3

0

]
= (4.10)

−hD−α
t

[
exp

(
x

3
√

a

)]
= − h

Γ(α + 1)
tα

[
exp

(
x

3
√

a

)]
,

u2(x, t) = (h + 1)u1(x, t) + hD−α
t

[
−a(3u2

0u1)xx − u1 + 3u2
0u1

]
= (4.11)

− h(h + 1)
Γ(α + 1)

tα

[
exp

(
x

3
√

a

)]
+

h2

Γ(2α + 1)
t2α

[
exp

(
x

3
√

a

)]
,

u3(x, t) = (h + 1)u2 + hD−α
t

[
−a(3u2

0u2 + 3u0u2
1)xx − u2 + 3u2

0u2 + 3u0u2
1

]
, (4.12)

5
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and so on. For h = −1, we obtain u(x, t) as follows

u(x, t) = e
x

3
√

a +
tα

Γ(α + 1)
e

x
3
√

a +
t2α

Γ(2α + 1)
e

x
3
√

a + ... = e
x

3
√

a

∞∑
k=0

tkα

Γ(kα + 1)
. (4.13)

In the above terms, we substitute h = −1 then the dominant terms remain and the higher order terms
vanish. For α = 1, we have

u0(x, t) = exp
(

x
3
√

a

)
, u1(x, t) = exp

(
x

3
√

a

)
t, u2(x, t) = exp

(
x

3
√

a

)
t2

2!
, (4.14)

and so on. Thus, we get the exact solution as

u(x, t) = exp
(

x
3
√

a

) (
1 + t +

t2

2!
+

t3

3!
+ ...

)
= exp

(
x + 3

√
at

3
√

a

)
. (4.15)

Example 2: Consider the fractional Kaup-Kupershmidt equation [24] as the following form

Dα
t u(x, t) + uxxxxx(x, t) + 45u2(x, t)ux(x, t)− 75

2
ux(x, t)uxx(x, t)− (4.16)

15u(x, t)uxxx(x, t) = 0, u(x, 0) =
2
3

+ tan2(x), 0 < α ≤ 1.

Using the above definition, we gain mth-ordedr nonlinear fractional operator as follows;

NFR(−→u m−1) = Dα
t um−1 + (um−1)5x + 45

m−1∑
i=0

i∑
k=0

ukui−k(um−1−i)x (4.17)

−75
2

m−1∑
i=0

(ui)x(um−1−i)xx − 15
m−1∑
i=0

ui(um−1−i)xxx.

Consequently, the first few terms of the FHAM series solutions are as follows,

u0(x, t) = u(x, 0) =
2
3

+ tan2(x), (4.18)

u1(x, t) = hD−α
t

[
Dα

t u0 + (u0)5x + 45u2
0u0x −

75
2

u0xu0xx − 15u0u0xxx

]
= (4.19)

2hD−α
t

[
tan(x)sec2(x)

]
=

2htα

Γ(α + 1)
tan(x)sec2(x),

u2(x, t) = (h + 1)u1(x, t) + hD−α
t

[
(u1)5x + 45u2

0u1x + 90u0u0xu1 −
75
2

u0xu1xx (4.20)

−75
2

u1xu0xx − 15u0u1xxx − 15u1u0xxx

]
=

2h(h + 1)tα

Γ(α + 1)
tan(x)sec2(x)− 2h2t2α

Γ(2α + 1)
(
2sec2(x)− 3sec4(x)

)
,

u3(x, t) = (h + 1)u2 + hD−α
t

[
(u2)5x + 45u2

0u2x + 90u0u1xu1 + 90u0xu0u2 + 45u2
1u0x (4.21)

−75
2

u0xu2xx −
75
2

u20xu0xx −
75
2

u1xu1xx − 15u0u2xxx − 15u1u1xxx − 15u2u0xxx

]
,

6
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and so on. For h = −1, we obtain u(x, t) is as follows,

u(x, t) =
2
3

+ tan2(x)− 2tα

Γ(α + 1)
tan(x)sec2(x)− 2t2α

Γ(2α + 1)
(
2sec2(x)− 3sec4(x)

)
(4.22)

+
4t3α

Γ(3α + 1)
[tan(x)sec2(x)(− 3780sec4(x) + 3780sec6(x)− 726sec2(x) + 2)]

+
4t3αΓ(2α + 1)

Γ(3α + 1)Γ(α + 1)2
[
tan(x)sec4(x)(360− 1890sec2(x) + 1890sec4(x))

]
+ ....

For h = −1 and α = 1, we get

u0(x, t) =
2
3

+ tan2(x), (4.23)

u1(x, t) = −2tan(x)sec2(x)t,

u2(x, t) =
(
−2sec2(x) + 3sec4(x)

)
t2,

and so on. Thus, the exact solution is as follows,

u(x, t) =
2
3

+ tan2(x)− 2tan(x)sec2(x)t−
(
2sec2(x)− 3sec4(x)

)
t2+ (4.24)

4t3

3
(
tan(x)sec2(x)[3780sec6(x)− 3780sec4(x)− 3sec2(x) + 1]

)
+ ....

Therefore, using Taylor series we obtain the following closed form solution

u(x, t) =
2
3

+ tan2(x− t). (4.25)

Example 3: Consider the fractional Fisher’s equation [21, 22] as follows,

Dα
t u(x, t)− uxx(x, t)− u(x, t) + u2(x, t) = 0, 0 < α ≤ 1, (4.26)

u(x, 0) =
1
4

[
1− tanh

(
x

2
√

6

)]2

.

By similar procedure as previous examples, we gain mth-order nonlinear fractional operator as follows,

NFR(−→u m−1) = Dα
t um−1 − (um−1)xx − um−1 +

m−1∑
i=0

uium−1−i. (4.27)

Consequently, the first few terms of the FHAM series solutions satisfy

u0(x, t) = u(x, 0) =
1
4

[
1− tanh

(
x

2
√

6

)]2

, (4.28)

u1(x, t) = hD−α
t

[
Dα

t u0 − (u0)xx − u0 + u2
0

]
= (4.29)

htα

Γ(α + 1)

{
5
24

[
sech2

(
x

2
√

6

) (
tanh

(
x

2
√

6

)
− 1

)]}
,

u2(x, t) = (h + 1)u1(x, t) + hD−α
t [−(u1)xx − u1 + 2u0u1] = (4.30)

h(h + 1)tα

Γ(α + 1)

{
5
24

[
sech2

(
x

2
√

6

) (
tanh

(
x

2
√

6

)
− 1

)]}
7
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+
25
288

h2t2α

Γ(2α + 1)

[
cos

(
x

2
√

6

)
− sinh

(
x

2
√

6

)] [
cosh

(
x

2
√

6

)
+ 3sinh

(
x

2
√

6

)]
cosh4

(
x

2
√

6

) ,

u3(x, t) = (h + 1)u2 + hD−α
t

[
−(u2)xx − u2 + 2u0u2 + u2

1

]
, (4.31)

and so on. For h = −1, u(x, t) is as follows,

u(x, t) =
1
4

[
1− tanh

(
x

2
√

6

)]2

− (4.32)

tα

Γ(α + 1)

{
5
24

[
sech2

(
x

2
√

6

) (
tanh

(
x

2
√

6

)
− 1

)]}
+

25
288

t2α

Γ(2α + 1)

[
cos

(
x

2
√

6

)
− sinh

(
x

2
√

6

)] [
cosh

(
x

2
√

6

)
+ 3sinh

(
x

2
√

6

)]
cosh4

(
x

2
√

6

)
+

25
1728

(
cosh

(
x

2
√

6

)
− sinh

(
x

2
√

6

)) {
sech3

(
x

2
√

6

)
[25+

15tanh
(

x
2
√

6

)
− 24sech2

(
x

2
√

6

)
− 6tanh

(
x

2
√

6

)
sech2

(
x

2
√

6

)]
t3α

Γ(3α + 1)

−3sech5

(
x

2
√

6

) (
1− tanh

(
x

2
√

6

))
t3α

Γ(3α + 1)Γ(α + 1)2

}
.

For h = −1 and α = 1, we get

u0(x, t) =
1
4

[
1− tanh

(
x

2
√

6

)]2

, (4.33)

u1(x, t) = −
{

5
24

[
sech2

(
x

2
√

6

) (
tanh

(
x

2
√

6

)
− 1

)]}
t,

u2(x, t) =
25
576

[
cos

(
x

2
√

6

)
− sinh

(
x

2
√

6

)] [
cosh

(
x

2
√

6

)
+ 3sinh

(
x

2
√

6

)]
cosh4

(
x

2
√

6

) t2,

and so on. Thus, using Taylor series we obtain the following closed form solution

u(x, t) =
1
4

{
1− tanh

[
1

2
√

6

(
x− 5√

6
t
)]}2

. (4.34)

Example 4: Consider the fractional Huxley equation [21, 22] as follows,

Dα
t u(x, t)− uxx(x, t) + u(x, t)− 2u2(x, t) + u3(x, t) = 0, 0 < α ≤ 1, (4.35)

u(x, 0) =
1
2

+
1
2
tanh

(
x

2
√

2

)
.

By similar procedure as previous examples, we gain mth-order nonlinear fractional operator as follows,

NFR(−→u m−1) = Dα
t um−1 − (um−1)xx + um−1 − 2

m−1∑
i=0

uium−1−i (4.36)
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+
m−1∑
i=0

i∑
k=0

ukui−kum−1−i.

Consequently, the first few terms of the FHAM series solutions satisfy

u0(x, t) = u(x, 0) =
1
2

+
1
2
tanh

(
x

2
√

2

)
, (4.37)

u1(x, t) = hD−α
t

[
Dα

t u0 − (u0)xx + u0 − 2u2
0 + u3

0

]
=

htα

8Γ(α + 1)
sech2

(
x

2
√

2

)
, (4.38)

u2(x, t) = (h + 1)u1(x, t) + hD−α
t

[
−(u1)xx + u1 − 4u0u1 + 3u2

0u1

]
= (4.39)

h(h + 1)tα

8Γ(α + 1)
sech2

(
x

2
√

2

)
− h2t2α

16Γ(2α + 1)
tanh

(
x

2
√

2

)
sech2

(
x

2
√

2

)
,

u3(x, t) = (h + 1)u2 + hD−α
t

[
−(u2)xx + u2 − 4u0u2 − 2u2

1 + 3u2
0u2 + 3u0u2

1

]
, (4.40)

and so on. For h = −1, u(x, t) is as follows,

u(x, t) =
1
2

+
1
2
tanh

(
x

2
√

2

)
− tα

8Γ(α + 1)
sech2

(
x

2
√

2

)
− (4.41)

t2α

16Γ(2α + 1)
tanh

(
x

2
√

2

)
sech2

(
x

2
√

2

)
+

1
128

{
2sech2

(
x

2
√

2

)
×

[
−2 + 2sech2

(
x

2
√

2

)
+ 3tanh

(
x

2
√

2

)
sech2

(
x

2
√

2

)]
t3α

Γ(3α + 1)

+sech4

(
x

2
√

2

) (
1− 3tanh

(
x

2
√

2

))
t3α

Γ(3α + 1)Γ(α + 1)2

}
.

For h = −1 and α = 1, we get

u0(x, t) =
1
2

+
1
2
tanh

(
x

2
√

2

)
, (4.42)

u1(x, t) = −1
8
sech2

(
x

2
√

2

)
t,

u2(x, t) = − 1
32

tanh
(

x
2
√

2

)
sech2

(
x

2
√

2

)
t2,

and so on. Therefore, using Taylor series we obtain the following closed form solution

u(x, t) =
1
2

+
1
2
tanh

[
1

2
√

2

(
x− t√

2

)]
. (4.43)

5 The HAM Convergence

A series is often of no use if it is convergent in a rather restricted region. In general, one can prove that
the series (3.6), given by the homotopy analysis method converges to the solution, it must be the solution
of the considered nonlinear problem. The discussion about the convergence of HAM may refer to [27].

THEOREM 1. If the series (3.6) converges, where um(x, t) is governed by the high order deformation
equations (3.9) and (4.1) under the definitions (3.11) and (4.7), then it is the exact solution of Equation
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(4.1).

Proof: If the series um(x, t) converges and

S(x, t) =
+∞∑
m=0

um(x, t). (5.1)

where
lim

m→+∞
um(x, t) = 0. (5.2)

By definition (3.11) of χm, we have

n∑
m=1

[um(x, t)− χmum−1(x, t)] = u1 + (u2 − u1) + ...(un − un−1) = un, (5.3)

which gives us, according to (5.2),

+∞∑
m=1

[um(x, t)− χmum−1(x, t)] = lim
n→+∞

un = 0. (5.4)

Therefore, using the above expression and the definition of L, we have

+∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = L
+∞∑
m=1

[um(x, t)− χmum−1(x, t)] = 0. (5.5)

From the above expression and Equation (3.9), we obtain

+∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = h
+∞∑
m=1

FR(−→u m−1(x, t)) = 0, (5.6)

which gives, since h 6= 0, that

+∞∑
m=1

NFR(−→u m−1(x, t)) = 0. (5.7)

From (4.7), it holds

+∞∑
m=1

NFR(−→u m−1(x, t)) =
+∞∑
m=1

[
Dα

t um−1(x, t)− a
m−1∑
i=0

i∑
k=0

(ukui−kum−1−i)xx(x, t) (5.8)

−um−1(x, t) +
m−1∑
i=0

i∑
k=0

(ukui−kum−1−i)(x, t)

]
=

+∞∑
m=0

Dα
t um(x, t)−

+∞∑
m=0

um(x, t)−

a
+∞∑
m=1

m−1∑
i=0

i∑
k=0

(ukui−kum−1−i)xx(x, t) +
+∞∑
m=1

m−1∑
i=0

i∑
k=0

ukui−kum−1−i(x, t) =
+∞∑
m=0

Dα
t um(x, t)

−
+∞∑
m=0

um(x, t)− a
d2

dx2

+∞∑
m=1

m−1∑
i=0

um−1−i

i∑
k=0

ukui−k(x, t) +
+∞∑
m=1

m−1∑
i=0

um−1−i

i∑
k=0

ukui−k(x, t)

=
+∞∑
m=0

Dα
t um(x, t)−

+∞∑
m=0

um(x, t)− a
d2

dx2

+∞∑
i=0

+∞∑
m=i+1

um−1−i

i∑
k=0

ukui−k(x, t)
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+
+∞∑
i=0

+∞∑
m=i+1

um−1−i

i∑
k=0

ukui−k(x, t) =
+∞∑
m=0

Dα
t um(x, t)−

+∞∑
m=0

um(x, t)

−a
d2

dx2

+∞∑
i=0

+∞∑
j=0

uj(x, t)
i∑

k=0

ukui−k(x, t) +
+∞∑
i=0

+∞∑
j=0

uj(x, t)
i∑

k=0

ukui−k(x, t)

=
+∞∑
m=0

Dα
t um(x, t)−

+∞∑
m=0

um(x, t)− a
d2

dx2

+∞∑
j=0

uj(x, t)
+∞∑
k=0

+∞∑
k=i

ukui−k(x, t)

+
+∞∑
j=0

uj(x, t)
+∞∑
k=0

+∞∑
k=i

uk

−a
d2

dx2

+∞∑
j=0

uj(x, t)
+∞∑
k=0

uk(x, t)
+∞∑
l=0

ul(x, t) +
+∞∑
j=0

uj(x, t)
+∞∑
k=0

uk(x, t)
+∞∑
l=0

ul(x, t)

= Dα
t S(x, t)− S(x, t)− a

d2

dx2
S3(x, t) + S3(x, t).

From Equations (5.7) and (5.8), we get

Dα
t S(x, t)− S(x, t)− a

d2

dx2
S3(x, t) + S3(x, t) = 0, t > 0, 0 < α ≤ 1. (5.9)

From Equations (4.1) and um(x, 0) = 0, it holds

S(x, 0) =
+∞∑
m=0

um(x, 0) = u0(x, 0) +
+∞∑
m=1

um(x, 0) = u(x, 0) = exp
(

x
3
√

a

)
. (5.10)

Therefore, according to the above two expressions, S(x, t) must be the exact solution of Equation (4.1).
This ends the proof. For Examples 2-5, according to theorem 1, similar conclusion holds. The parameter h
determines the convergence region and rate of the approximation for HAM which is shown in Tables 1–3. If
we take h = −1, we obtain the exact results which are presented in Tables 1-5. For h = −1, we obtain the
best results of the case α = 1 which has an exact solution.

Table 1: The absolute error, |u− φ8|, for the Kaup-Kupershmidt equation when h = −1 and α = 1.
error = |u(x, t)− φ8(x, t)|

ti/xi 0.1 0.2 0.3 0.4 0.5
0.1 2.335×10−9 5.792×10−7 1.451×10−5 1.429×10−4 8.482×10−4

0.2 3.87×10−9 9.329×10−7 2.266×10−5 2.159×10−4 1.235×10−3

0.3 7.716×10−9 1.834×10−6 4.394×10−5 4.123×10−4 2.319×10−3

0.4 1.709×10−8 4.029×10−6 9.572×10−5 8.913×10−4 4.976×10−3

0.5 4.12×10−8 9.642×10−6 2.276×10−4 2.106×10−3 1.169×10−2

6Conclusion

In this paper, we applied the homotopy analysis method for solving the nonlinear fractional heat conduction,
Kaup-Kupershmidt, Fisher and Huxley equations. The validity of the method has been successfully applied
to study several types of partial differential equations. In addition, this method allows us to the perform
complicated and tedious algebraic calculations through the computer. The obtained results of applying
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Table 2: The absolute error, |u− φ11|, for the Fisher’s equation when h = −1 and α = 1.
error = |u(x, t)− φ11(x, t)|

ti/xi 0.1 0.2 0.3 0.4 0.5
0.1 3.936×10−16 4.011×10−13 2.297×10−11 4.046×10−10 3.729×10−9

0.2 3.958×10−16 4.053×10−13 2.333×10−11 4.128×10−10 3.825×10−9

0.3 3.877×10−16 3.989×10−13 2.307×10−11 4.103×10−10 3.819×10−9

0.4 3.698×10−16 3.824×10−13 2.223×10−11 3.973×10−10 3.717×10−9

0.5 3.429×10−16 3.565×10−13 2.084×10−11 3.744×10−10 3.521×10−9

Table 3: The absolute error, |u− φ8|, for the Huxley equation when h = −1 and α = 1.
error = |u(x, t)− φ8(x, t)|

ti/xi 0.1 0.2 0.3 0.4 0.5
0.1 4.853×10−16 1.137×10−13 2.645×10−12 2.371×10−11 1.252×10−10

0.2 9.855×10−16 2.425×10−13 5.963×10−12 5.701×10−11 3.244×10−10

0.3 1.432×10−15 3.581×10−13 8.955×10−12 8.718×10−11 5.059×10−10

0.4 1.802×10−15 4.544×10−13 1.147×10−11 1.267×10−10 6.601×10−10

0.5 2.078×10−15 5.271×10−13 1.338×10−11 1.323×10−10 7.797×10−10

this procedure show the high accuracy and rapid convergent of the homotopy analysis method. Homotopy
analysis method provides us with a simple way to adjust and control the convergence region of solution series
by introducing an auxiliary parameter h. This is an obvious advantage of the homotopy analysis method. In
this way, we obtain solutions in power series. Also, we obtained the exact solutions in the special case α = 1,
h = −1, for some equations. However, it is well-known that a power series often has a small convergence
radius. It should be emphasized that, in the frame of the homotopy analysis method, we have great freedom
to choose the initial guess and the auxiliary linear operator L = Dα. This work shows that the homotopy
analysis method is a very efficient and powerful tool for solving the nonlinear fractional partial differential
equations.
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