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_________________________________________________________________________________________________  

ABSTRACT----  In this research article, a new two parametric measure of Entropy 𝑱𝜶𝜷 
(𝑷) and its corresponding code 

word length 𝑳𝜶𝜷 
(𝑷) has been developed. The developed measures are the generalizations to some well known existing 

measures. Besides, some noiseless coding theorems for discrete noiseless channel have been developed, and the results 

thus obtained have been verified with the support of an numerical example. Also, at the end of this research article, a 

comparative study in terms of  monotonic behavior  among the proposed entropy  𝑱𝜶𝜷 
(𝑷), Matahi’s entropy 𝑴𝜶(𝑷) 

and Tsallis entropy 𝑻𝜶(𝑷) together  with their respective average code word length measures have been made and 

graphically displayed.  
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1. INTRODUCTION 
 In the modern world, information is being transmitted through various means and in all such cases the same is being 

carried from one person/place to another. There is no denying in this fact that we seek information only when we are in doubt 

and we resort to the concerned quarters to remove our doubts. On the other hand, if an event can occur in just one way, there 

is no uncertainty/doubt about it and no information is called for either. We get some information by the occurrence of an event 

only when there was some uncertainty before its occurrence. Naturally, the amount of information received by the occurrence 

of an event   must be equal to the amount of uncertainty prevailing before its occurrence. Thus, uncertainty and information 

are two sides of the same coin. 

The modern information theory can be classified into the following three branches: 

(i) Shannon Theory, due to C.E Shannon, [9] deals with mathematical models for communication problems. The concept 

of ‘Entropy’ given by Shannon in his mathematical model, has been found useful in many different disciplines and has 

penetrated into various fields like; linguistics, Psychology, Neurology economics, Business, Accounting, statistics, Biology 

and Thermodynamics. 

(ii)  Cybernetics, due to Norbert wiener deals with the communication problems encountered in living beings and social 

organizations and 

(iii)  Coding Theory, a recently developed subject that deals with the theory of error correcting codes, finds applications 

in problems of determining good encoding schemes to combat errors in transmission. 

Information theory, the mathematical theory of communication, has two primary goals: The first is the development of 

the fundamental theoretical limits on the achievable performance when communicating given information source over a given 

communications channel using coding schemes from within a prescribed class. The second goal is the development of coding 

schemes that provide performance that is reasonably good in comparison with the optimal performance given by the theory. 

Information theory was born in a surprisingly rich state in the classic papers of Claude E. Shannon [9] and [10] which contained 

the basic results for simple memory less sources and channels and introduced more general communication systems models, 

including finite state sources and channels. 

 
 

 

2. INFORMATION CONTENT AND SHANNON’S ENTROPY: 
 

 In information theory, the information content, self information or surprisal of a random variable is the amount of 

information gained when it is sampled. 

Definition: Given a random variable X = (x1, x2, … , xn) with probability P = (p1, p2, … , pn) having probability mass 

function  PX(x), the self- information of measuring X as outcome  x is defined as: 

     IX(x) = − log[PX(x)] = log(
1

PX(x)
)     (2.1) 

Analogously:     (2.1) 

                                            I(E) = − log[p(E)] = − log(P). 
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 Entropy is the expectation of the self-information of all the outcomes of the random variable. Let a random variable  

X = (x1, x2, … , xn) with probabilityP = (p1, p2, … , pn), pi ≥ 0 and ∑ pi = 1n
i=1 , Shannon [9] has defined the following 

measure of information and call it as entropy: 

                                          H(P) = − ∑ pi log pi
n
i=1                                                                                                   (2.3) 

 Let the probabilities of a transmission of n code-word be P = (p1, p2, … , pn) with the corresponding lengths L =
(l1, l2, … , ln) and these lengths satisfy the Kraft’s inequality [6] defined as: 

                                                   ∑ D−li ≤ 1n
i=1                                                                                                                        (2.4) 

Where, D is considered to be the size of code alphabet. Shannon [9] has proved that for all uniquely decipherable codes 

satisfying inequality (2.4), the lower bound of the average code-word length give as,  

                                                 L = ∑ pili
n
i=1                                                                                                                         (2.5) 

Lies between                    H(P) and H)P) + 1. 
Campbell [2] considered the more general exponentiated mean code-word length as: 

                                      La =
α

1−α
logD [∑ piD

−li(
α−1

α
)n

i=1 ] ;  α > 0, α ≠ 1                                                                   (2.6) 

 And showed that for all uniquely decodable codes, satisfying constraint (3), the lower bound of (5) lies between                    

Rα(P) and Rα(P) + 1, where  

                                    Rα(P) =
1

1−α
logD[∑ pi

αn
i=1 ], α > 0, α ≠ 1                                                                              (2.7) 

Is Renyi’s [8] entropy.  

 
 

3. CODING THEORY 
 Coding theory is the study of the properties of codes and their fitness for a specific application. Codes are used 

for data compression, cryptography, error correction and more recently also for network coding. Codes are studied by 

various scientific disciplines such as information theory, electrical engineering, mathematics and computer sciences – for 

the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of 

redundancy   and the correction (or detection) of errors in the transmitted data.   

 

4. PREFIX CODE 
Prefix code is a code in which no code word forms the prefix of any other code word. Such codes are also called Uniquely 

Decodable or Instantaneous codes. 

 

5. AVERAGE CODE WORD LENGTH 
Consider a set of symbols (alphabets)  S = {s1, s2, … , sM} with their corresponding probabilities  

S = {p1, p2, … , pM};  (pi > 0, ∑ pi = 1). If the symbol s1be assigned a code word of length li, i = 1, 2, … , M, then the 

definition for the average code word length is  L = ∑ pili
n
i=1 , and the basic problem of Noiseless coding is to minimize 

average code word length. (Noiseless Coding Theorem).                               

                  Shannon [10] established the first noiseless coding theorem which states that for all uniquely decipherable 

codes, the lower bound for the arithmetic mean  L = ∑ pini
n
i  lies between S(P) and S(P) + 1, where        

                   S(P) =  − ∑ pi log pi
n
i   is Shannon’s measure of entropy. 

Here in this communication, we have presented a new two parametric entropy measure 𝐉𝛂𝛃 
(𝐏) of order α and type β along 

with its corresponding average code-word length 𝐋𝛂𝛃 
(𝐏) and an attempt has been made to test its genuiness in the line of 

already existing measures in the literature of information communication.  

 

6. NOISELESS CODING THEOREMS 
The proposed measure is given as under: 

                             Jαβ 
(P) =  

1

αβ−1
[∑ pi

2−αβn
i − 1];  α ≠ 1, β > 0, −∞ <  α <  2                                                 (6.1)     

Corresponding to this measure, we propose the following average codeword length as: 

                               Lαβ 
(P) =  

1

αβ−1
[∑ piD

(
αβ−1

αβ
)(ni)n

i − 1] ; α ≠ 1, β > 0,                                                               (6.2)       

 The parameters α and β may be considered as factors affecting the codes used for data compression and data 

transmission, associated with the source alphabet with corresponding probabilities denotes as, [xi, pi].  

Particular cases for (6.1) and (6.2): 

(I). When  α → 1 and β = 1, the measure defined in  (6.1) tends to Shannon’s entropy given as:  
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                                        S(P) =  − ∑ pi log pi
n
i                                                                                                                   

(II). When  α → 1 and β = 1, the measure defined in (6.2) becomes  L =  ∑ pini
n
i , which is optimal code-word length due to 

Shannon [9].              

(III).    When β = 1, the measure defined in (6.1) tends to Mathai’s entropy [6 ] communicated by Baig and Javid [1]. 

(IV).    When β = 1, the measure defined in  (6.2) tends to average codeword length corresponding to Mathai’s [6] entropy as 

communicated by Baig and Javid [1]. 

        In this section, we have developed some noiseless coding theorems corresponding to the proposed entropy measure. 

Theorem 1:- For all uniquely decipherable codes 

                                   Jαβ(P)  ≤ Lαβ(P)                                                                                                                            (6.3)    

Where 

                                  Lα =
1

αβ−1 
[∑ p2−αβD

(
αβ−1

αβ
)(ni)

− 1n
i ]  

Proof:-By Holders inequality, we have 

                             ∑ xiyi ≥  (∑ xi
pn

i )
1

p(∑ yi
qn

i )
1

qn
i     ; 0 < p < 1, q < 0 or 0 < q < 1, p < o                              (6.4)   

Setting   xi = pi

−1

t  D−ni ; 

                                yi = pi

1

t   and    p = −t ⇒ 0 < p < 1, q =
t

t+1
⇒ q < 0 

Thus equation (6.4) becomes     

                                   ∑ [[pi]
−1

t  D−ni[pi]
1

t ] ≥n
i      [{[pi]

−1

t  D−ni}
−t

]

−1

t

[{[pi]
1

t  }

t

t+1
]

t+1

t

      

Using Kraft’s inequality, we have 

                              [[pi]
1

t+1]

t+1

t
≤  [[pi] Dnit]

1

t    

or,                           ∑  n
i [pi]

1

t   ≤  ∑ [[pi]Dnit]
1

t  n
i   

or,                            ∑  n
i [pi]  ≤  ∑ [piD

nit] n
i                                                                                                    (6.5)    

  Dividing both sides by t, we get:  

                                         
∑  n

i [pi]  

t
≤

∑ [[pi]Dnit] n
i

t
  

Subtracting n from both sides, we get: 

                                        ∑
[pi−1]

t

n
i  ≤  ∑  n

i

[[pi]Dnit−1]

t
                                                                          (6.6)            

      Taking  αβ =
1

1−t
, t =

αβ−1

αβ
 , α, β > 0, αβ ≠ 1  and  pi = pi

2−αβ  

Thus equation  (6.6)  becomes: 

                      
αβ

αβ−1 
 ∑ [(pi

2−αβ) − 1]n
i  ≤

αβ

αβ−1 
∑ [(pi

2−αβ)D
(

αβ−1

αβ
)(ni)

− 1]n
i    
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Dividing both sides by αβ, we get: 

                     
1

αβ−1 
∑ [(pi

2−αβ) − 1]n
i     ≤

1

αβ−1
∑ [(pi

2−αβ)D
(

αβ−1

αβ
)(ni)

− 1]n
i                                                (6.7)    

That is                          Jαβ(A)  ≤ Lαβ 

Which proves the theorem. 

Theorem 2:-For all uniquely decipherable codes, 

                                     Jαβ,β ≤  Lαβ,β                                                                                                                                  (6.8)       

where,  

                                    Lα,β =
1

β−αβ
∑ [(pi

2−αβ
) D

(
αβ−1

αβ
)(ni)

 −   (pi
2−β

D
(

β−1

β
)(ni)

)]n
i                                      (6.9)  

   Where either    α ≥ 1, β ≤ 1 or β ≥ 1, α ≤ 1 

Proof: - Since from (6.7), we have 

 

                                
1

αβ−1 
∑ [(pi

2−αβ) − 1]n
i     ≤

1

αβ−1
∑ [(pi

2−αβ)D
(

αβ−1

αβ
)(ni)

− 1]n
i   

Multiplying both sides by(αβ − 1), we have 

                  ∑ [(pi
2−αβ) − 1]n

i     ≤ ∑ [(pi
2−αβ)D

(
αβ−1

αβ
)(ni)

− 1]n
i                                                                                         (6.10)     

Substituting α =1, we have 

                ∑ [(pi
2−β) − 1]n

i     ≤ ∑ [(pi
2−β)D

(
β−1

β
)(ni)

− 1]n
i                                                                                       (6.11)                                               

Subtract  (6.11)  to  (6.10) and divide by (β − αβ), we get 

                
1

β−αβ
∑ [(pi

2−αβ) – (pi
2−β)]n

i      

                                                ≤ 
1

β−αβ
∑ [(pi

2−αβ)D
(

αβ−1

αβ
)(ni)

− (pi
2−β)D

(
β−1

β
)(ni)

]n
i                                                  (6.12)                                                               

That is 

           Jαβ,β ≤  Lαβ,β . This proves the theorem. 

 

Theorem 3:- For all uniquely decipherable codes 

                           J/
αβ,β ≤ L/

αβ,β                                                                                                                                           (6.13)       

Where  Lαβ,β
/

=
1

αβ+β+2
∑ [{(pi

2−αβ)D
(

αβ−1

αβ
)(ni)

− (pi
2−αβ)D

(
β−1

β
)(ni)

} − 2]n
i                                                    (6.14)                

Proof:- The result can be easily proved by adding  (6.10)  and (6.11)  and then dividing by                 (αβ +
β + 2). 
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Theorem 4:-     For all uniquely decipherable codes 

                                  J/
αβ,β 

 ≤ L/
αβ,β                                                                                                                                 (6.15)       

Where 

                                                             J/
αβ,β 

=
1

β−αβ
[

∑ [{(pi
2−αβ)}−1]n

i

∑ [{(pi
2−β)}−1]n

i

]                                                           (6.16)                   

And  

                        Lαβ,β
/

=
1

β−αβ
[

∑ [{(pi
2−αβ)D

(
αβ−1

αβ
)(ni)

}−1]n
i

∑ [{(pi
2−β)D

(
β−1

β
)(ni)

}−1]n
i

]                                                                     (6.17)        

To prove this theorem, we first prove the following lemma 

Lemma 1: For all uniquely decipherable codes 

∑[{(pi
2−αβ)} − 1]

n

i=1

≤ ∑ [{(pi
2−αβ)D

(
αβ−1

αβ
)(ni)

} − 1]

n

i=1

 

Proof of the Lemma. From equation  (6.5)  we have 

                               ∑ (pi) ≤  ∑ (pi) n
i Dnitn

i    

Subtracting ‘n’ from both sides, we get 

∑[{(pi)} − 1] ≤  ∑[{(pi)Dnit} − 1 ]

n

i

n

i

 

Taking                        αβ =
1

1−t
, t =

αβ−1

αβ
 ,  and  pi = p

i
2−αβ   

we have   

                                 ∑  n
i [{pi

2−αβ
} − 1] ≤ ∑ [{pi

2−αβ
D

(
αβ−1

αβ
)(ni)

} − 1] n
i                                                               (6.18)      

Which proves the lemma 

Proof of the theorem 4. 

Substituting  α = 1   in (2.16), we have:         

                                ∑  n
i [{pi

2−β
} − 1] ≤ ∑ [{pi

2−β
D

(
β−1

β
)(ni)

} − 1] n
i                                                                       (6.19)              

Dividing (2.17) to (2.16), we get 

                                 
∑  n

i [{pi
2−αβ

}−1]

∑  n
i [{p

i
2−β

}−1]
  ≤

∑ [{pi
2−αβ

D
(

αβ−1
αβ

)(ni)
}−1] n

i

∑ [{pi
2−β

D
(

β−1
β

)(ni)
}−1] n

i

      

Dividing both sides by β − αβ, we have    
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1

β−αβ

∑  n
i [{pi

2−αβ
}−1]

∑  n
i [{pi

2−β
}−1]

  ≤
1

β−αβ

∑ [{pi
2−αβ

D
(

αβ−1
αβ

)(ni)
}−1] n

i

∑ [{pi
2−β

D
(

β−1
β

)(ni)
}−1] n

i

                                                       (6.20)       

                     ⟹                J/
αβ,β  ≤ L/

αβ,β .  

The R.H.S. is a new exponentiated mean codeword length of order α and type β and is defined as: 

                            
1

β−αβ

∑  n
i [{pi

2−αβ
}−1]

∑  n
i [{pi

2−β
}−1]

  ≤
1

β−αβ

∑ [{pi
2−αβ

D
(

αβ−1
αβ

)(ni)
}−1] n

i

∑ [{pi
2−β

D
(

β−1
β

)(ni)
}−1] n

i

  

 

7. ILLUSTRATION 
In this section, we shall verify the above proved theorems by taking into consideration numerical example.   

Let a source memory has six characters with the following probabilities of transmission:  
 

X A B C D E F 

P(X) 1/3 1/4 1/8 1/8 1/12 1/12 
 

Moreover, by using above depicted data, we shall use Shannon Fanno encoding procedure to obtain uniquely 

decodable code to the above message ensemble, and a comparative study among the Proposed Entropy Jαβ(P), Mathai’s 

Entropy Mα(P), Tsalli’s Entropy 𝐓α(P) and their corresponding Average  Code word lengths   shall also be carried out. 

The outcome of   Jαβ(P) ,  Mα(P) and Tα(P)  together with their corresponding average code word lengths for different 

values of α & fixed β=1 using Shannon encoding are displayed in the table 1 as under: 

   

 

 

Table: 1 
Values of  𝐉𝛂𝛃(𝐏) , 𝐌𝛂(𝐏),  𝐓𝛂(𝐏) and their corresponding code word lengths 

for different values of α at fixed β=1,  using Shannon encoding. 

 
 

𝐏𝐢 

Shannon  

Fano Codeword 

 

𝐥𝐢 

 

α 

 

β 

  Proposed Entropy Mathai’s     Entropy Tsalli’s Entropy 

𝐉𝛂𝛃(𝐏)       𝐋𝛂𝛃(𝐏) 𝐌𝛂(𝐏)  𝐋𝛂(𝐏) 𝐓𝛂(𝐏) 𝐋𝛂(𝐏) 

1/4 00 2 0.20 1 0.95 0.95 0.95 1.25 5.16 5.16 

1/4 01 2 0.30 1 1.02 1.02 1.02 1.40 4.47 4.47 

1/8 100 3 0.40 1 1.10 1.10 1.10 1.54 3.90 3.90 

1/8 101 3 0.50 1 1.20 1.20 1.20 1.66 3.41 3.41 

1/16 1100 4 0.60 1 1.30 1.30 1.30 1.75 3.00 3.00 

1/16 1101 4 0.70 1 1.42 1.42 1.42 1.82 2.66 2.66 

1/16 1110 4 0.80 1 1.56 1.56 1.56 1.86 2.37 2.37 

1/16 1111 4 0.90 1 1.72 1.72 1.72 1.89 2.12 2.12 
 

 

 
 

 From the table: 1, as depicted above, we have summarized the following results: 

1)   That due to the increase in the value of alpha there is corresponding increase the in the value of proposed entropy 

𝐉𝛂𝛃(𝐏)and Mathai’s entropy 𝐌𝛂(𝐏) together with their respective average code word lengths. However, in case of 

Tasalli’s entropy and its corresponding average code word length, its value decreases due the increase in the value of 

alpha under Shannon Fanno encoding scheme. 

2) That the average code word length in case of proposed entropy 𝐉𝛂𝛃(𝐏) is less than the average code word length under 

both Mathai’s entropy 𝐌𝛂(𝐏)and Taslli’s entropy 𝐓𝛂(𝐏), very considerably,  though the values of both proposed entropy  

𝐉𝛂𝛃(𝐏) and Mathai’s entropy 𝐌𝛂(𝐏) are same under Shannon Fanno Coding scheme. 

3) That the proposed entropy 𝐉𝛂𝛃(𝐏) and its corresponding average code word length 𝐋𝛂𝛃(𝐏)is monotonic increasing with 

the increase in the value of alpha. 
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Next, we plot the Table 1 and see from the Fig.1 and Fig. 2, that both the proposed entropy  𝐉𝛂𝛃(𝐏) and Mathai’s entropy 

𝐌𝛂(𝐏) are almost similar and Monotonic increasing with the increase in the value of α, but  in case of Tsallis entropy 𝐓𝛂(𝐏), 

the same is monotonic decreasing with the increase in the value of α. However, the average code word length in case of 

proposed entropy measure is less than that of Mathai’s entropy and Tsallis entropy very considerably as is depicted in Fig. 2 

below.    

 

 

Figure 1 Graphic overview of values of different Entropy measures 

 

Figure 2. Graphical Overview of Code-Word Lengths of Different Entropy Measures 
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8. CONCLUSION 

In this research article, we proposed a new two parametric measure of Entropy Jαβ 
(P) and its corresponding code 

word length Lαβ 
(P) and we analyzed its main properties in the graphic-theoretic setting. We also compare  the  proposed 

entropy with some already existing entropy measure observed that average code word length in case of  proposed two 

parametric entropy measure is less than that of compared entropy measures under Shannon Fanno encoding scheme which 

makes it more efficient in terms of efficiency and redundancy of transmission/communication system.  
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