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ABSTRACT---- The paper is devoted to construction of an asymptotic solution of a weakly nonlinear singularly
perturbed differential system of fractional order. To construct the asymptotic solution we use ideas of normal differential
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are calculated, and corresponding solution schedules for various values of a small parameter are constructed.
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1. INTRODUCTION
We consider a nonlinear problem of the form
ey"?(t,e) = AQ)y +ef(ty) +h(t), y(0,6)=Y", te[0T], 1)
where y={y,,...,y,} unknown vector function, A(t) known nxn matrix-function, f(t,y)={f,,...,f,} known

vector-function, y° ={y?,...,y }el" known constant vector, £>0 small parameter. We look for an asymptotic
solution of the problem (1) on the following bounds:

1)  At)eC”([0,T],0"),h(t)eC”([0,T],0");

2)  spectrum {4;(t)}= o (A(t)) of the matrix-function A(t) satisfies the requirements:

) 4,)#0 vte[0T], j=Ln;

ii) A (t) = A, (1) Vte[0,T], i=], i,j=1n;

iii) ReA, (1) <0 vte[0,T], j=1n.

The problem (1) will be considered in general for non-linearity f (t,y), analytical with respect to Y, i.e. the function
f (t,y) belongs to aclass Q, which is described as follows:

Definition 1. They say that the vector functions f (t,y)={f,, f,,..., f,} belong to the class Q, if its each component
f,(t, y) is expanded into the series:

fty)=> f"my"= > f™ ™0y @
|m|=0 my+...+m, =0
where all coefficients ™ (t)eC~([0,T],0") converge absolutely and uniformly with respect to t<[0,T] in the
polycylinder o={y:|y|<R,j =1n} (here: m=(m,,...,m,) multiindex,

Im|=m,+...+m, y" =y ...y;", R>0 some constant.
Wenotethat absolute and uniform convergence of the series (2) in the domain /7 (or another similar series) means that
the series " | fm (t)||ym| converges uniformly with respect to t [0,T] at each fixed y e I7.

|m[=0
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2. REGULARIZATION OF PROBLEM

Regularization of the problem (1) is performed using the vector u ={u,,...,u,} of regularizing variables

£44(6) A
%des o0
u,=e?° =e ¢, j=Ln.
These variables satisfy the linear differential system st = A(t)u, u(0,&)=1={L...,I} (linear normal form). For the
function y(t,u, &) such that

y(t’u’g)| u=u(t,g)E y(t1‘9)l
a(t) # (1)
where u=u(t,g)=<e ¢ ,...,e ¢ :, Y(t,&) exact solution of the system (1), it is naturally to put the following

problem:
N+ L awu-ADY- o109 =0, JOD)-y" ®
Solution of the “extended” problem (3) is defined as a series
y(t,u,e)=:zoskyk(t,u> @

by non negative powers of the parameter &. Putting this series into the problem (3), and equating coefficients at the same
degrees &, we obtain the following iteration problems:

Ly, (t.7) E%A(t)u CADY, =h®). %0, =y (50)
Ly, (t,7) =k %+ f(t,yo) y,(0,7)=0; 5
of (t, _
Lyz(t,u) :_\/E%—F%yl' yz(Ov 1) ZO; (52)
0 _
Ly, (t,u) =/t i;ktl +P(t Yo Yoo Yir)r ¥ia(0,1)=0, k>3, (54)

where B, (t,Y,,...,Y,_,) some polynomial of y,,..., Y, , with coefficients, that depend on partial derivatives of functions
f(t,y) atthe point y =y,(t,u), moreover, P, (t,Y,,..., Y, ) is linear with respect to the last argument y, ,.

Iteration problems (50  will be  solved in the space U of  wvector  functions
w(t,u) ={w, (t,u),w,(t,u),...,w (t,u)}, each component of which is represent table by the series (2) with

coefficients W, (t,u) € C*([0,T],00"), converging absolutely and uniformly with respect to t € [0, T] in the domain

G={u: |ui| <1+, ] :H}, where ¢ >0 some (small) constant.

3. SOLVABLE OF FIRST ITERATION PROBLEM
The iteration problem (50) in the space U has the following solution:
Yo(t,u) =& (V)c, (O, + &7 (e, Ou, +...+ &7 (B, B, -
— A (H)h(t) = C(t)diag (£ (1), £ (t),.... £ (1) Ju— A (Dh(t),

where §j(o)(t)eC°°([O,T],Dl) arbitrary functions, C;(t) eigenvectors of the matrix A(t) corresponding to

(6)

eigenvalues  A;(t), ] =1n, C(t) =(c,(t),c,(t),...,c,(t)). Subjecting this solution to the initial condition
¥,(0,1) = y°, we will have

2(0)c,(0) + &7 (0)c, (0) +-...+ &7 (0)c, (0) = A (Dh(t) +y°,
where we find the values 51-(0) 0):

E9(0)= (A (0)h(0) +y°,d,(0), j=1n, 7
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where d(t) eigenvectors of the matrix A’(t), corresponding to eigenvalues ZJ- ), j=1n, (e
A'(t)d;(t) = /TJ td;), ] =1,1). If now we put the function (6) to (t,y,), then we obtain the series:
Ly, tu) = F™ s mun, ®
|m[=0
belonging (at some auxiliary conditions) to the class U. We now introduce the following designation: if w(t,u) series

Z w™ (t)u™, then by W™ (t,u) we will denote the sum of the members of this dimension series |m| =k, ie.

|m[=0

w(t,u)= > w™(tu", k=012...,

Iml=k

and by U © U subspace of the class U, consisting of all sorts of such sums (assume that the element 0 = Z 0-u"
|mj=k

belongs to the space U ®)). In the space U ) we define the dot (at any t € [0, T]) product:

def
<w®(t,u), 2t u) >=< > W ", 2 tu" > =

|m|=k
def [
= > W), 2M) =D (W) 2.
|m|=k |m[=k
Highlight in (8) f(t,y,(t,u)). Denoting ¥(t) =—A"(t)h(t) and expanding f(t,y) into Taylor series in a
neighborhood of the point y = Yy (t), we will have:

F(t.y) = f(ny(t»+@(y—w»+m

where dots denote the members of the dimension |m| > 2 relativelyto y — y(t). Putting here y =Y, (t,u) from (6), we

get

of (t,y(t)
ou

fty,(tLu) = f (VM) + C()diag (&7 (t),-...&" O +...,

where we find

of (£, y(1)

FO Yo (tu) = C(t)diag(&” (1),....&” () =

9)
oy

It will be shown below that for solvability of the system (51) in the space U , it is necessary and sufficient the conditions:

=> TCIO 0 0,

) —
<—\/t_6y°T(t’u)+ fO(t,u),d;(t)u; >=0 vte[0,T], j=1Ln.
Putting here functions (6) and (9), we will have
- o (0) * of (t, V(t)) 0) _
<= VE(EP b)) u, v ¢, (t)u; |.d,(t)u; >=0vt[0,T],
j=1
or
: of (t,y(t . .
JEEO @) +(%c,—a> —¢, (t),d,-(t>J:§°> (h=0 j=in.
Joining the initial conditions (7) to these equations, we find uniquely the functions fj(o) ®):
[ TEIED e (5) ¢ (500, (5)
5 ),

£ (1) = (A (Oh(0) + y°,d, (0)) -€° - . i=1n, (10

thus, we construct the solution (6) of the problem (50) in the space U unambiguously.
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Let us turn to solution of the next problems (5,) K >1. However, for this we need information from the theory of
solvability of general form systems Ly(t,u) = h(t,u) inthe space U. Turning to the presentation of this theory, we note

that the operator L in the space U ™ will have the form L* = Z/TJ By, 8£ and the basis of its kernel KerL" in U®
it U;

will be: v;(t,u)=d;(t)u;,(j=1n) thatitis easy to see directly.

4. NORMAL AND UNIQUE SOLVABILITY OF GENERAL ITERATION PROBLEM

Each of the iteration problems (5,) can be written as follows:

Lyt =24 00 - AQy=htw),  %0D -y (1)
j=1 j
where h(t,u) corresponding right hand side, y* €[] " known constant vector. The following proposition holds.
Theorem 1. Let the right hand side h(t,u) € U and the conditions 1), 2a) — 2b) hold. Then for solvability of the system

(12) in U it is necessary and sufficient that

<h®(t),v,(t,u)>=0 Vvte[0,T, j=1n. (12)
Proof. Let h(t,u) eU have the form h(t,u) = z h™ (t)u™. We will define o solution of the system (11) in the
form of the series "
y(t.u) = ZO y™ (B, (13)
=

Putting this series in to the system (11), we will have the formal equality:

m \ aum m m m m
2 YO 40u == Ay ®u" = >, h (Ou”
0 i ;w0 0
o ou™ _ m-e; _ m,
Taking into account that 2 =mu ’"=mu"...u
j

» _
..U, we obtain:

ZLimjzj]ym(t)um—z AQY™ (U= h™ (b,

im0\ =1 Im0 M0

Equating here coefficients at the same powers U™, we get the system

[(m, A1 - AB)]u™ () =h™(t) |m|=0. (14)
Defining solution of this system as Y™ (t) = C(t)&™ (t), we obtain the equations systems:

[(m, A1 - A(t)] EM () =CHt)h™(t) |m| >0,
which can be rewritten in the scalar form:
[, 20)-4,® &P O = (" ®),d;,®), j=Ln, |m[0. (15)
At |m| =0 we find:
(0)

EM ()= %}&l)‘m) j=1n, (16)
and when |m| > 2 we calculate:
U040 L an
(M A) 150
When |m| =1 we have the system (e, ={0,...,1,...,0}, k—thortin0")

&7 ()=
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(4 (0= 2, O)] ) = (b (t).d; @), j=1n,

(k €{1,2,...,n} fixed). For solvability of this system in the space C*([0,T],0") it is necessary and sufficient that

(% (.6,) =0 Vte[0.T]. (18
Moreover, £* (t) € C*([0,T],0 )\ arbitrary function, and & (t) at k = J can be calculated uniquely:
h%(t),d . (t —
ﬁJgjek(,[):( (t).d; (1)) i=in j=k

AO-40 "
therefore

o, (h*(t),d;(1)
y () =C()¢* =& e, )+ ), ———¢;().

’ %—:1 A )= 24)
Hence, for solvability of the system (11) in the class of formal power series (13) it is necessary and sufficient that conditions
(18) are simultaneously satisfied for all K =1,n, which are equivalent to conditions (12). In this case, the formal solution

(13) has the form:

YU =Dy O+ 3 YU = Y4000+

k=1 [m[>0,|m]=1
L (h* (0.4,(0) L (" @.4,0) ),
SEW @ lu, c,(t) ",
L AD-A0 ’”}“ +m>%¢1(§(m,z(t)>—zj<t) ()} 9

where & (t) =E&X(t) eC™([0,T],07) arbitrary scalar functions, k =1,n. Let us now show absolute and uniform

convergence of the series (19).
First, we require that there exists a straight line (77), passing through zero 4 =0 of the complex plane A, such that all

/”tj (t) (forall t €[0,T]) lies in the open half-plane bounded by this straight line. It follows that

inf |(m, ()= 4,(t)|=p, >0, j=1n. (20)
Im}>2,te[0,T]
And then, denoting by p=min{p,, p,,..., P,} >0, we have
o, (W™ (1), (1) n, |(h™ (t),d; ()]
™)=Y —— I ¢ (1)< ! (D)<
5O 200 2,0 O S m 20y -0 O
<SS I 0)]dy 0]y 0] < S o) @)

(here Cy S—th component of the vector C;, d,;, h{™ k—th components of the vectors d; and h™ respectively,
n
m
C=Z:max‘dkj (t)‘ C (t)‘ Since the series Z‘hém) (t)Hu| converge uniformly with respect to
j=1tel0T] m>2

te[0,T] (h(t,u) €U), then the series z

[mj=2

m
yim) (t)Hu| also has the same property (due to the inequalities (21)).
Therefore, the function (19) belongs to the space U. Theorem 1 is proved.
Thus, in the conditions (12) the system (11) has countless solutions (19), where &, (t) — arbitrary scalar functions,

k =1,n. To calculate them, it is necessary to impose additional restrictions on the solution Y(t,u) of system (11).

Theorem 2. Let the conditions 1), 2a) — 2b) hold, and the right hand side h(t,u) eU satisfies conditions (12). Then
the problem (11) with additional restrictions:

(&) N
<—ﬁ%+ B(t)y” (t,u) + 0@ (t,u),v;(t,u) >=0 vte[0,T, j=1,n, (22)

where B(t) e C*([0,T],0") known nxn matrix, 0@ (t,u) eU® known vector function, uniquely solvable in the
space U.
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Proof. Subjecting the solution (19) to the initial condition y(O,I); we will have:

02, (h%(0),d,0) (h™(0),d,(0))
. (0)c, (0)= ———,(0 : j
Z‘f“c( e é,ﬁz,lzkw) 2000 2| S04 0

(here we denote the well-known right-hand side by Y, ). Multiplying this equality by dj(O) and taking into account

0 |=y.,

biortormality of the systems {C;(t)} and {d, ()}, we find &;(0) =(y,,d;(0)), ] =1,n. Nowsubject the solution (19)
to the condition (22). Calculatefirst

@ n n
E2 By )+ () = ST )+ BOY* OB, + X0 (Ou,
k=1 k=1
Multiplying this function by d,(t))u,, we write the condition (22) in the form:
~&,® [ (¢,(1).d,®) - (Be, (1).d, () &, ®) =), s=Ln,
where 1 (t) known function in the class C*([0,T],J%). Joining to these equations the initial conditions

£.(0)=(y.,d,(0)), s= 1., found earlier, we calculate uniquely the functions & (t) :
[ (S)CS(S _Cs(s)]ds t [B(S)Cs (5)_05( )]dS

EO=(.d,o)e  © —fe *L0gdk s=In,

0
and thus, uniquely we find the solution (19) of the problem (11). Theorem 2 is proved.
Example 1. Let in the system

y" = hy - ep'(0), y(0,£)=Yy",

(23)
YD = z+ey’* —eg'(t), 2(0,6)=2"
eigennumbers A, and /12 are constant and related by 4, =24, 4 #4,, Re4 <0, A4 #0, i=12,
Equivalent problem has the following form:
ety =4y-ep'®),  y(0.8)=Y",
etz = ,2+ey? —eg'(t), 2(0,¢) = 2°.
Introduce regularizing variables:
2 24
- f=ate) -2 f=p)
For extended functions W={y(t,7,£),Z(t,z,&)} we obtain the following problem:
D4 T ez, D gg=cep), 90,006)=Y"
ot or, or,
e B e —eg'(t), 2(0,0,0,6) = 2°.
ot or, or,
Defining a solution of this problem in the form of series
y(t,7,6) = Zskyk (t,7), Z(t,r,¢)= Zskzk (t,7).,
k=0 k=0
we get the following iteration systems:
L) =A T+ ,=0 1,0.00)=Y"
(24)
Lozo(t,7) E%—O %—0—%20 =0, 7(00,0)=y",
or, or,
L0 =t 2 g0, %000=0
ot 25)

Lozl(t,r):—ﬁaati +y2 —g'(t), 2,(0,0,0)=0,
L L L L L
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The problem (24) in the space U has a solution
Yo (t,7) = (t)e™, Z,(t,7) =, (t)e?,
where o, (t) arbitrary functions, k =1,2.We find initial data for the functions ¢, (t): &, (0) =Y°, e,(0)=2°.
Now we construct the problem (25). It will have the form:

L[)yl (t, T) = _\/t_alll(t)etl - §0,(t), yl (0! 0’ 0) = 0!
Loz,(t,7) =ty (t)e? +a2(t)e™ —g'(t), 2,(0,0,0) =0. 27)

For solvability of (27) in the space U we need the following system of equations:
—Jta] =0, o, (0) = y°, —~ta, =—a?, @, (0) = 2°, where we find o (t) = Y°, a,(t) = 2° +2y2+/t, and thus, the
functions Y, (t,z) and Z,(t,7) will be:

Yo (t,7) = y%e™, z,(t,7) = 2% + 2y Jte™.
Example 2. Find approximate solutions and build graphs of the system solution.

y*?(te)) (0,2 0)y(te) L[oryz) yOn=1
& = )

A () 0,1 1)\ z(t,&) 0,1-z* )" z(0,2) =1,
for different values & in the environment of the computer mathematical system Maple [7-8].
>restart; cond:=y(0.1)=1,z(0.1)=1;

cond =y(0.1)=1,2(01)=1

>sys:=diff(0.1*y(t),t)=(sqrt(2)*y(t)+0.1*y(t)*z(t))/sqrt(t),(diff(0.1*z(t),t)=(z(t)+0.1*
(y(O)+z(t)*z(t)/sart(t));

sys:=0.1 [% y(t))

_ J2 y(t) + 0.1 y(t) z(t) 01 [g z(t)] _z(t) +0.1y(t) + 0.1 z(t)?
T Ldt

Tt Jt
2
sys:= 0.2 [% y(t)j _ J2 y(t) +%2 y(t) z(t)' 0.2 [% z(t)) _ z(t)+0.2 y% + 0.2 z(t)

>F:=dsolve({sys,cond},[y(t),z(t)],numeric):
>with(plots):
>pl:=odeplot(F,[ty(1)],0..0.1, color=red,thickness=2,linestyle=3):
>p2:=odeplot(F,[t,z(t)],0..0.1,color=green,thickness=2):
>p3:=textplot([0.1,0.6,"y(t)"], font=[ TIMES,ITALIC, 12]):
>p4:=textplot([0.08,0.6,"z(t)"], font=[TIMES,ITALIC, 12]):
>display(p1,p2,p3,p4);
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