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ABSTRACT— New nonlinear integral representations (NIRM) are derived from a nonlinear differential-type
boundary value problem using a fundamental solution of the primary space-differential operator of the differential
equation. Integral representations are equivalent to differential equations. A set of integral representations is an
integral-type boundary value problem. Unknown variables of a boundary value problem can be determined by solving
a set of integral equations obtained from a set of integral representations. In the present paper, a set of integral
representations using the fundamental solution of the primary space-differential operator is derived for viscous flows.
The velocity, vorticity, and pressure of the Navier-Stokes equation can be determined by solving a set of integral
equations obtained from a set of integral representations. A new numerical solution of the Navier-Stokes equation is
proposed based on integral representations. The integral representation method was used to obtain the numerical
results of low-Reynolds-number laminar flows around a circular cylinder. The narrower regions and coarser meshes
are used in the numerical calculations using the integral representation method than in those using the ordinary
FEM. The numerical results correctly reflect the experimental ones. Unlike FEM, as seen from that constant
distribution of the unknown variables is possible, NIRM may not assume the continuity of the unknown variables
between elements from the beginning. It would be safe to say this is a big advantage of NIRM.

Keywords— New integral representation method (NIRM), Primary space-differential operator, Vorticity, Navier-Stokes
equation

1. INTRODUCTION

Generally speaking, a physical phenomenon is described as a boundary value problem in differential equations, which
may be referred to as a differential-type boundary value problem. Using a fundamental solution of the differential
equations, we can derive integral representations from the differential-type boundary value problem. If we substitute the
boundary condition into the integral representations, we obtain the integral equations. We can determine the unknown
variables by solving the integral equations. Namely, the integral representations are equivalent to the differential
equations. As such, we may refer to the boundary value problem expressed by the integral representations as an integral-
type boundary value problem.

A solution using integral representations is widely used in potential flow calculations as the boundary element
method. In the case of viscous flow calculations, Wu conducted a series of studies [1-4] and verified the effectiveness of
the method through numerical calculations. However, according to his principal idea, although he used integral
representations to obtain the velocity field from the vorticity field, he used differential equations to express the
convective diffusion of the vorticity. He also proposed integral representations describing the convective diffusion of the
vorticity, but these representations are different from those used in the present paper and were derived using a
fundamental solution for the initial value problem. On the other hand, Uhlman obtained integral representations not only
for the kinematic relations between the velocity and vorticity but also for the convective diffusion of the vorticity [5]. He
pointed out the possibility of an integral-type boundary value problem, but did not mention how to apply his theory to
computations and did not verify his theory through numerical calculations.

In the present paper, we discuss the integral-type boundary value problems from a similar viewpoint as Uhlman and
propose a new numerical method for solving the Navier-Stokes equation. The proposed method has the following
characteristics:

(1) Although the vorticity is the most important variables, the proposed method differs from the vortex particle
method [6] in that the vorticity distribution is treated as that of particles. Although appropriate for treating the
convection, the vortex particle method can’t treat the viscous diffusion precisely. The vortex particle method is
mathematically correct for non-viscous fluid. However, in case of viscous flow, the introduction of viscous diffusion of
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vortex blob is not mathematically strict. 1t’s a kind of heuristic approach. Hence, it can’t give a mathematically correct
way to increase the accuracy of the viscous diffusion effect. However, the authors admit that the vortex particle method is
one of the practical methods and is very useful in many practical problems. The proposed method treats the diffusion as
well as convection correctly, and as such may be suitable for discussing diffusion-dominant problems.

(2) The present method is a unique numerical method that is based on integral representations of the velocity,
vorticity, and pressure reported by Uhlman [5].

(3) Uhlman’s integral representations do not include differentiations of unknown variables by space variables. Since
the differential operations by space variables are replaced by integral operations, we can easily introduce an irregular
element division of the space. The proposed method would be favorable for cases in which the fluid region is
geometrically complex and/or the boundary changes in time and the element division becomes irregular. If the boundary
does not change in time, we are not required to obtain the inverse of the matrices at every step. Since the inverse is
required to be obtained once at the beginning of the calculation, the load of the calculation would not increase
significantly.

(4) Since we need to consider only the region in which the vorticity exists, the required calculation time and computer
memory are reduced.

For the understanding of the readers, we add the following descriptions. Reference [12-15] were added as the results of
survey on recent developments with respect to integral equation method (IEM), or integral representation method (IRM),
on unsteady Navier-Stokes equation (UNSE). These are boundary element method (BEM) or boundary integral method
(BIM). It was not possible to find those about the idea of Uhlman by Uhlman or others. As the Solution of UNSE, there
are time-space separate method (TSS) that handles time and space in different way and time-space unified method
(TSU) that treats time and space as a unit. Finite difference method (FDM) is TSU, and Finite Element Method (FEM) is
generally TSS, using difference equation (DE) in time and variational equation (VE) in space. This paper follows the
TSS, and we use DE in time and IRM in space. As the fundamental solution, we use that of an appropriate space-
differential operator. We use that of Laplace operator in this paper. If we use TSU, we use IRM in unified space
including time.In this case, it is possible to derive the BIM [12-14]. A fundamental solution of an appropriate time-space-
differential operator, for example, that of the linear unsteady diffusion problem is used. There is also a method that IRM
is obtained for a part of the unknown variables, and the other variables are dealt with DE. For example, the relationship
between vorticity and velocity is rewritten in the form of IRM, the so-called Biot-Savart law, and DE is used to deal with
the time evolution of the vorticity. In this paper, IRM covers also time evolution of the vorticity.

In addition, the handling of nonlinear term is important in the solution of UNSE. If we treat the time evolution
explicitly, it is simple because it does not require the iteration calculation. However, we have to reduce the time step. If
we use implicit method, the iteration is required, but the time step can be greatly increased. From the viewpoint of the
stability and accuracy, implicit solution is much better.

Reference [12] derives BIM for a steady solution of the Navier-Stokes equation. Fundamental solution of Stokes
equation is applied there. Since It gave the direction of a new development in IEM, this idea should be appreciated highly.
Although the idea of this paper is based on Uhlman’s paper, Uhlman himself has not developed a numerical method
specifically. The uniqueness of Uhlman’s theory is that IRM derived by Uhlman with respect to the space portion of the
unsteady differential equations for the vorticity does not include the spatial derivatives of the unknown variables. This
paper is intended as well to complete the theory Uhlman, were subjected to numerical concrete. I'm dealing with the
explicit development time.

In the present paper, we discuss the laminar flow alone and do not address the turbulent flow, but we will deal with the
turbulent flow as the next step. As for the turbulent flow, we think the idea of this paper is valid in a significant portion.
First, in order to increase the stability, accuracy and computational efficiency, we will introduce the implicit method for
time-marching. Further, in order to increase the accuracy, we use currently the constant distribution of the unknown
variables in elements, but should use the higher distribution. Unlike FEM, as seen from that constant distribution of the
unknown variables is possible, IRM may not assume the continuity of the unknown variables between elements from the
beginning. It would be safe to say this is a big advantage of IRM. On the preparation mentioned above, we intend to
introduce a large eddy simulation.

2. BASIC EQUATIONS OF FLUID MOTION

We assume that the fluid is incompressible and inviscid. The density and kinematic viscosity are denoted by p and
v, respectively, and e,, e, and e, are the base vectors of Cartesian coordinates in the fluid region V . Here, t is the
time. The position vector is X = x,g; = X, + X,€, + X,€,, and the velocity vector is u(x,t) =u,(x,t)e, =ue, +U,e, + Uz, .
The pressure is denoted by p(x,t) . The continuity equation and the Navier-Stokes equation in V are, respectively, as

V-u=o, 1)

Asian Online Journals (www.ajouronline.com) 61




Asian Journal of Engineering and Technology (ISSN: 2321 — 2462)

Volume 02 —

é)—u+(u -V)u ——EVp+vV u,
ot p
where V is the nabla operator e, /0x, , and o is the source of fluid per unit volume.
The vorticity o is defined as
0o=VxU.
If (u-V)u is rewritten according to the vector formula as

(u~V)u:%V(u-u)—uxm,

then the Navier-Stokes equation, Equation (2), is modified as
%+VB Uxo=-vVxo+vVo,

where B is the total pressure and is given as
B=%+%(u-u—uw -u,).
If we operate V x on both sides of Equation (5), we obtain
%D—Vx(uxco) =—rVx(Vxm).

Applying vector formulas, we have

Vx(uxm)=(o-Vu-U-Vioe+u(V-@)-o(V-u)=(o-V)u-(Uu-Vie-co,

Vx(Vx®)=V(V-0)-Ve=-Ve,
Equation (7) is then written as
%0+(U~V)m: (0-Vu-co+vVie
If V- is operated on both sides of Equation (5), we obtain

VZB—V-(uxm)z—%Gwvza
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If we assume that the boundary surface S is the body surface and that the fluid velocity on S is u;, then the

boundary condition on S is given by
u=u;.
From Equation (5) , the boundary condition of B becomes
oB
on
where n is the unit outward normal of the boundary surface.

3. IRROTATIONAL FLOWS OR POTENTIAL FLOWS

=(VB)-n=n- (—%J+u><(o—vim+vVUj,

11)

(12)

Let X=x8 + X, +X€; =X6&;, #(X) and G(x,&) be the coordinates, the velocity potential and the fundamental

solution of Laplace operator A, =V?2 = é’z/axié’xi having a singularity at the point & =¢&e,, respectively. Note that ¢(x)

and G(x,&) satisfy

Ap(x)=0(x),
AG(X,8) =6(x,8),
where 5(x,&) is Dirac’s delta function. The fundamental solution G(x,&) is given by

1
S = g

where r(x,&) | x—E&]|.
As is well known, the integral representation G(x,&) of ¢(x) is written as

a¢5(3i) 5G(X )

£0)p(x) =—[[.| G(x,8) == - §(e) === |ds, + [[[ G(x.)a(@)dV;,

where
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1 if xinV
e(x)=41/2 ifxonS. ()
0  otherwise
For simplicity, we write Equation (16) as

&b = jj[ }d5+meodv (18)

When X isin V , from Equation (18), we have

¢:—HS[G%— aa—ﬂd5+ijGadv. (19)

The velocity vector u is given by

u(x) = V,(x) = [v ¢ _ 4 NG G}ds ][ (v.8)sav, (20)
where V, is e; 9/0x, and
V.60 =G =G (xBe =, == . (21)
And G satisfies
@z—ﬁ or V.G=-V.G. (22)
ox 0 ’
Hence, from Equation (20), we have
u(x) = V,409 = [, B? ‘;’f b (2? ﬂe ds +[[[ Godv. (23)

After lengthy manipulation, we obtain
u:-”S[G(u-n)—c;x(nxu)]ds+mvc;o—dv, (24)

where —u-n and nxu express the source and vorticity distributions, respectively, on the boundary S . Hence, we know
that the velocity vector u is induced by the source and vorticity distributions on the boundary S and the source
distribution o in V .

4. ROTATIONAL FLOWS OR NON-POTENTIAL FLOWS

In the case of non-potential flows, we consider the velocity vector u(x) instead of the velocity potential ¢(x). Then,
we have the kinematical equations between the velocity vector u(x) and vorticity w(x):

V-u(x)=o(x), (25)
Vxu(x) =m(X). (26)

If we operate V x on both sides of Equation (26), we have
Vu(x)=Vo-Vxo. 27)

We call V? as the primary space-differential operator. We can apply results similar to Equation (18) to each component
of the vector u:

gu_—ﬂ[ a—“—u—}ds mve(va_wm)dv. (28)

In Equation (28), the contributions of the source and vortex are expressed as Vo and V x® . However, it is favorable
if these contributions are given by an expression that does not include the space derivatives of o and o . With respect to
GVo, we use

j j jv G(Vo)dV = j j jv [V(Go) - (VG)odV = j L GohdS — j j jv (VG)odV . (29)
With respect to Vx®, we apply vector formulas:
[I[,6(Vx®)aV = [[[ [Vx(Gw) - (VG)xw]dV = [[ nx(Gw)ds - [[] (VG)xwdV . (30)
Substituting Equations (29) and (30) into Equation (28), we obtain
eu _—ﬂ {G——u—}ds +jj Gonds - jj nx (Gw)dS — m (VG)odV +m (VG)xewdV . (31)
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After lengthy manipulation, we obtain from Equation (31)
gu:—”s[G(u-n)—Gx(nxu)]dS +mv [Go-Gxo]dv . (32)
In the case of flows outside of S, we must take the infinite boundary S_ into consideration. We assume that S_ is a
closed surface and that the flow is uniform at infinity. Since the uniform flow u_ satisfies V-u_=0 and Vxu_=0
inside of S_, from Equation (24), we have
—Hs [G(u, -nN)-Gx(nxu,)dS =u,. (33)
Hence, we obtain
gu:—jL[G(u-n)—Gx(nxu)]ds +mv [Go-GxaldV +u, . (34)

Equation (34) coincides with the results of Wu and Thompson[1] and Uhlman[5].

We should be cautious in shrinking the calculation region by symmetry, because the infinite boundary becomes open.
If we consider the disturbance component, we can neglect the contribution of the infinite boundary and always derive the
correct results. When the infinite boundary is not closed, we must modify the integral representation given by Equation
(34).

5. INTEGRAL REPRESENTATIONS OF VORTICITY AND TOTAL PRESSURE

Next, we derive the integral representations of the vorticity o and the total pressure B . From Equation (9),
we have

Vi = _[8_0) +U-Vo-(o-V)u+ o-m} (35)
v| ot
Using the property of the primary space-differential operator V2, we obtain from Equation (18)

gm-—”[G—— aG}js —m [—+(u Vo - (o V)u+aw}dv (36)

We transform this integral representation into an expression that does not include the space derivatives of u and ® as
far as possible. Since we have:

U-Vo—(o-V)u=u(V-0)—o(V-u) - Vx(uUxm) =—co—-Vx (Ux®) , 37)
G[Vx(Ux0)]|=Vx(Guxw))-(VG)x(Uxw), (38)
from vector formulas, we obtain
Glu-V)o-(0-V)u]=-Goo -V x(GUuxe))+(VG)x (Ux®). (39)
Substituting Equation (39) into Equation (36), we have
O :—jj [Ga—m—}ds —m G—dV —mv [-Vx(Guxm))+(VG)x (Uxw)]dV . (40)
Applying a vector integral formula, we obtain
gmz—jL[Géa—(:—m—}dS ——jj Glnx (Uxw)]dS += m {G—Jr(ve) (um)}dv (41)
Furthermore, since G =V,G =-V .G, the integral representation of e can be written as
gm_—jj [G—m(e n)}dS—l.U Glnx (ux)]ds +£'”L{G%D—Gx(uxm)}dv . (42)
v s v

This integral representation includes a space derivative dm/on in a boundary integral.
The integral representation given by Equation (42) is shown to be equal to the following representation by Uhlman [5].

co=-[[ [G(@n)-Gx(nxw)ds +3ﬂSB(Gxn)dS ~[[.o(Gxn)ds

i m{ ( ] G——Gx(uxm)}dv

=—[[[6(0-n)-Gx(nxw)]ds +—jjs B(Gxn)dS - [[. o(Gxn)ds

_%HSG( a“jds _m {G——Gx(uw)}dv 43)

Uhlman’s expression does not include any space derivatives of variables u, o and B .
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We now obtain the integral representation of B below. Again, We write the differential equation given by Equation
(10) and the boundary condition given by Equation (12):

VZ(B—VO'):V~(U><(0)—%T inVv, (44)
M:n-[—a—u+uxw—vim) onsS. (45)
on ot
Hence, using the property of the primary space-differential operator V2, we obtain from Equation (18)
ou oG oo
5(B—vo*)=—”S{Gn~(—a+uxm—vimﬂdS +”S(B—m)5ds +JJ.J.VG{V-(uxco)—E}dV . (46)
Equation (46) is shown to be equal to the integral representation of B obtained by Uhlman [5]:
e(B-vo)— jj (B- vo-)—dS J‘L{n-zt—uG+VVG-(nxm)}dS—jﬂv [[VG-(UX(;))]+G%T}dV. (47)

6. GENERAL RESULTS INCLUDING RESULTS OTHER THAN 3D RESULTS

We generalize the integral representations in 3D obtained above to other dimensions following Wu and Thompson
[1]. With respect to velocity u, Equation (32) is generalized as

SU(XJ)=—AUS(X_é)(u@'t)'n@)dsg L(X &)x (M xu(E)

|x—¢[° |x—g[* >
e G0 VY gl LTI @xco(& x=gxaE 4, }C “8)
|x-¢&["
where V refers to the volume area in 3D, the surface area in 2D and the line area in 1D, respectively, and S refers to the

boundary surface in 3D, the boundary line in 2D and the boundary point in 1D. Moreover, A and C are defined as
follows

1/47 and d =3 in 3D
=<2z and d=2 in 2D, C=
/2 and d =1 in 1D
With respect to the vorticity @, we generalize Equation (42) as

st = 669 2E0as, - af co(a,tl)i(fg—l?m)dsé

- Le(x,a)[ni x(UEt) x (&, 1) Jds,

1 on(Et) 1 X=&)xUuEt)xo@Er)
+;LG(X,§)TdV§—A;L T av; (50)

0 for flows interior of S
(49)

u, for flows exterior of S’

where
—(1/47)|x-&* and d =3 in 3D
G(x,E)=<(/27)In(x—-&]|) and d=2 in 2D. (51)
(1/2)|x-¢&| and d =1 in 1D
If we generalize Equation (43) obtained originally by Uhlman [5], we obtain

£()o00t) = _A{L{(n; 0ED)(x-8) (x-§x(n xo@E1) }dsg

IX—ild |x-¢&/"
——j (e;) x é)§| s+ |, (Z’;t)%dsé}
_% L(né x%}G(X,ﬁ) ds,
+%L%G(x,§)dV§—A%L (x=8)x I(;(éétl)xm@ ) av, . (52)
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In 1D flow, the second surface integral including B on the right-hand side should be replaced by l?(L—Zy)e3
p dx

considering the contribution from the infinite boundary.
With respect to the total pressure B, Equation (47) obtained originally by Uhlman [5] is generalized as

e(X)[B(x,t) —vo(x,t)] - J. [B(E,1) —vo(§,1)] 6G(X g)

é

Ou(&t) -&)-(n,xo(g, t))
- L(né.T]G(x,g)dSE—AL x gg| S,

v &9 |(i@£>|xm(a D gy, Jaa@ Y gav, . (53)

7. SOLUTIONS USING INTEGRAL REPRESENTATIONS

The integral representations given by Equations (48), (52) and (53) do not include the space derivatives of u,
o and B in any of the regional and boundary integrals. Hence, if we use the integral representations, we can
derive a numerical solution of flow that does not require the space derivatives. The integral representation given
by Equation (50) does not include the space derivatives in the region but does include the normal derivative of
® on the boundary.

The solutions of flow using the integral representations are summarized below.

Solution Al. Explicit solution
Al.1. Solution using the integral representations given by Equations (48), (50) and (53):

(1) Assume o(x,t) attimet.

(2) Obtain u(x,t) using Equation (48).

(3) Solve the integral equation given in Equation (50) for dw(x,t)/ot.

(4) Obtain e(x,t+dt) from m(x,t+dt) =o(x,t)+ (Go(xt)/ot)dt .

(5) Make the time t +dt and repeat the process.

Solve B(x,t) from the boundary integral equation given in Equation (53) in parallel.

Al.2. Solution using the integral representations given by Equations (48), (52) and (53):
(1) Assume o(x,t) attimet.

(2) Obtain u(x,t) using Equation (48).

(3) Solve the boundary integral equation given in Equation (53) for B(x,t).
(4) Solve the integral equation given in Equation (52) for dw(x,t)/ot.

(5) Obtain e(x,t+dt) from m(x,t+dt) =o(x,t)+ (Go(x,t)/ot)dt .

(6) Make the time t +dt and repeat the process.

Solution A2. Implicit solution
A2.1. Solution using the integral representations given by Equations (48), (50) and (53):

(1) Assume o(x,t) and u(x,t) attime t.

(2) At t+dt, approximate dm(x,t+dt)/ot by dm(x,t+dt)/ot =[w(x,t +dt) —m(x,t)]/dt in Equation (50) and solve
the simultaneous integral equations given in (48) and (50) for u(x,t +dt) and @(X,t+dt).

(3) Make the time t+2dt. Then, return to Step (2) and repeat the process.

Solve B(x,t) from the boundary integral equation given in Equation (53) in parallel.

As an alternative to solving the integral equations simultaneously, an iteration may be applied. Namely, we

approximate u(x,t+dt) by u(x,t) and solve the integral equation given in Equation (50) for @(x,t+dt) . Using

o(X,t+dt), we renew u(x,t+dt) by Equation (48). Then, using u(x,t+dt), we again solve the integral equation
given in Equation (50) for m(x,t +dt) . We repeat this process until convergence.

AZ2.2. Solution using the integral representations given by Equations (48), (52) and (53):
(1) Assume o(x,t) and u(xt) attime t.

(2) At t+dt, approximate dm(x,t+dt)/ot by dm(x,t+dt)/ot =[m(x,t+dt)—m(x,t)]/dt in Equation (52) and
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solve the simultaneous integral equations given in Equations (48), (52) and (53) for u(x,t+dt), o(xt+dt) and
B(x,t+dt).
(3) Make the time t+2dt. Then, return to Step (2) and repeat the process.
As an alternative to solving integral equations simultaneously, an iteration may be applied. Namely, we approximate
u(x,t+dt) and B(x,t+dt) by u(x,t) and B(x,t), respectively, and solve the integral equation given in Equation
(52) for o(x,t+dt). By using (x,t+dt), we renew u(x,t+dt) and B(x,t+dt) by Equation (48) and the boundary
integral equation given in Equation (53), respectively. Then, using u(x,t+dt) and B(x,t+dt), we again solve the
integral equation given in Equation (52) for w(x,t + dt) . We repeat this process until convergence.
7.1. Applications to 1D flows
As special cases of 2D flows, there are flows with u=u(y,t)e, and Vp=dp/dxe, =const. In other word, these flows
are 1D flows such as the Rayleigh flow, the Couette flow and the Hagen-Poiseuille flow. In these cases, the vorticity ®
is directed toward z—axis or @ = aw(y,t)e,. In the following discussions, we assume o =0.
The flow region is 0 < y < L. The equation of continuity is satisfied automatically, and Equations (3) and (5) become

a;eaz—a—ue3 or6—u=—a) in0<y<L, (54)
oy
a—uelz— a_“’+_%e or—w:—l 6_u+1@ inO0<y<L. (55)
ot oy pdx oy viot pdx
If we apply the integral representation given by Equation (48) for velocity u, we have
x-g=(y-ne, n@={ V7L (56)
S=(y—-n)e,, = —e, ony=0’

e(u(x,t) = L(X é)xm(& t) dv, +

g

1{(x—a)x(n(a)xu(@,t»} +1{(x—a)x(n(¢)xu@,t»}
2 |x=g] " |x=g] o

- _% [ san(y - me, x (. Yedn +%[sgn<y —L)e, x (e, x u(L,t)el)]+§[sgn(y>e2 x(-e, xu(0,t)e,)]

1, 1 1
= ‘EL sgn(y —me(n.drne, - =sgn(y - Lu(L, He, + = sgn(y)u(0.t)e, G7)
Hence, we obtain

u(y.) = [ sgn(y ~ (.t + 5 sgn(L - Y)u(L.D + 5. (58)

If we apply the integral representation given by Equation (52) for vorticity o , we have

sty = [ 22D |y jay +%—<L 2y)
#2san(L= Yol ) + 250 + - au(L, t’| y|- %Mm. (59)

If we apply Equation (55), Equatlon (59) can be rewrltten as
1 (Low(n,t) 1 1
se(y.) = [ == [y = ldn +Zsgn(L = (L) + 2 sgn(y)e(0.)
1 0w(0,1)

1 dw(L,t)
-— L-y|+= . 60
2 &y IL=yl+5 Y Iyl (60)
The integral representation given by Equation (60) is simply the 1D integral representation obtained by Equation (50)
If we apply the integral representation given by Equation (53) for B, we have

1 1 1.t

£(Y)B(y. 1) — 2 sgn(L - y)B(L. 1) ——sgn(y)BO, 1) = _EL sgn(y —mu(, e(,t)d7 . (61)
We transform the 1D integral representations into algebraic equations. For simplicity, we divide the region 0<y<L

into N equal elements of length dy and denote the midpoint of each elementas y,, i=0,1,---, N —1. Thus, we have

L
dy=— 62
AN (62)
and

y; =(0.5+i)dy . (63)
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We approximate Equation (60) as

_ 15 0w(y)0h) cvj-ovz
ety =0 3 Sl ynldn
1 da(L,t) 1 80(0,t)
+snL Lt+ sn 0,t)— +=———2=\y|. 64
gn(L—y)o(L,t) +=sgn(y)a( 2 o IL ylzaylyl (64)
We define a;; for IP y=y, and ag,; for BP y=0 ory=L as
i- dy®/4 hen i=j
iI:YJdY/ZI__ ldn = y/ Wen! J-, (65a)
b dyjae |y, —y;ldy when i= ]
/2
oy = [} Yoo ~10E = Yep ~¥; 1y (65b)
Then, we obtain then the algebraic equations for IP (y,, i=0,1,---, N—1) and BP (yz, =0, L), respectively, as
IJT - Ja(y,,t
o0= 23 P20 Lsgny o+ st
v % 2
1 ow(L,t ow(0,t
2Ly 220 2y 2208 (662)
2 oy oy
1 1 daly;t) 1 1
Ea)(yBP!t) =2_ z aBPj—J"'_Sgn(L_ YBP)C‘)(L’t)+_Sgn(ysp)a’(oat)
v i 2
1 ow(L,t ow(0,t
1o ZED 2y, 20 (660)
In the case of Solution Al.1, the algebraic equations and the time progression equation are given by
ZV[w(yi,t)—%sgn(L—yi)w(L,n—%sgn(yi)a»(o,t)
N-1 0 't
JLooLy), o 1000Y, } S, a)(y, ) (67)
2 oy 2 oy =0
1 1 1
2V|:Ea)(yBP’t) _ESgn(L = Yep)o(L,t) - Esgn(yBP)a)(olt)
1 do(L,t 1 0w(0,t i 6w(y ,t)
+_—( )|L—pr 5 ( )l BP|1| Z — (67b)
2 oy 2 oy =0
oy, t+dt) = oy, t) + 2200 a“’(y"t) dt. (67¢)

The total number of the unknowns of the algebraic equations is N +2: 6w(yj,t)/6t for j=0,1,---,N-1, and »(0,t)

or dw(0,t)/oy and w(L,t) or daw(L,t)/dy . The total number of equations isalso N+2: N for IPand 2 for BP.

In this case, all of the unknown variables on IP and BP become unknowns. In other words, the method is a
region+boundary element method.

As an approximation, we use J0w(0,t)/dy =~ 2[a(Y,.t)—@(0,1)]/dy , if ©(0,t) is known. Otherwise, we use
@(0,t) ~ w(y,,t) —0w(0,t)/dy -dy/2 , if dw(0,t)/dy is known. We use similar approximations for x =L . In this case, the
number of unknowns and the number of equation are both N .

In the case of Solution A2.1, the algebraic equations are given by

2vdt{a)(yi ,t+dt) —%sgn(L —vy)o(L,t+dt)— %sgn(yi)a)(o,t +dt)

1 0a(L,t +dt) 1 00(0,t + dit) Nt Nt

+ET| L-vi| _ETl Yi :jzzoaijw(yj!t+dt)_jzz;,aija)(yj:t) ; (68a)
1 1 1

2vdtba)(yBP,t +dt) —Esgn(L — Vgp)o(L,t+dt) — Esgn(yBP)a)(O,t +dt)

1 0w(L,t +dt ow(0,t +dt
Pl oy, 200Dy

2 oy oy :| jZ:(;aBPja)(yj’t+dt)_§aspjw(ijt)- (68b)
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The total number of unknowns of the algebraic equations is N+2 : e(y;t+dt) for j=01---,N-1, and

@(0,t+dt) or dw(0,t +dt)/dy and e(L,t+dt) or dw(L,t+dt)/dy. The total number of equations is also N+2: N
for IP and 2 for BP.

In this case, we can also obtain the values of the unknown variables on BP from Equation (68b) assuming that the
values of the unknown variables on IP are known. Substituting the values of the unknown variables on BP into Equation
(68a), we again update the values of the unknown variables on IP. Then, we again substitute the new values of the
unknown variables on IP into Equation (68b) for the new values of the unknown variables on BP. We can consider this
type of iterative scheme, which corresponds to Boundary Element Method + Iteration (BEMI).

As an approximation, we use 0w(0,t +dt)/dy = 2[w(Y,,t +dt) — (0, t + dt)]/dy, if @(0,t+dt) is known. Otherwise,
we use @(0,t+dt) = a(y,,t+dt)—0w(0,t +dt)/dy-dy/2, if Ow(0,t+dt)/dy is known. We use similar approximations

for x= L. In this case, the number of unknowns and the number of equations are both N .
7.1.1. Hagen-Poiseuille flow
We take the x—axis to be in the horizontal direction and the y— axis to be perpendicular to the x —axis. There are

two plates placed on the y=0 and y=L planes. Both the lower plate on y=0 and the upper plate on y =L are fixed.
Instantly, we apply the constant pressure gradient dp/dx to the fluid in O<y<L. We observe the fluid motion in
0<y<L relative to coordinates fixed to the plates. The flow is one-dimensional and satisfies u=u(y,t), v=0, and,
op/ox = const . The conditions are summarized below.
Pressure gradient: 0.
Initial value: From u(y,,0)=0, w(y;,0)=0, (69)
0w(0,t) aa)(L,t) 1 dp
v oy
Approximation: o(0,t) = @(Y,,t), o(L,t) = o(yy_,t), (71)

where Equation (55) yields the second equation in Equation (70). In case of Solution Al.1, Equations (67a) and (67c)
yield

Boundary value: From u(0,t) =u(L,t) =0, (70)

1

N-1 b ot
ZI{a)(yi )+ — a)(y] )
2pv

%(2%—0—%@@0,0—%@(“m)} Sa,

j=0

,i=0,1---,N-1, (72a)

o(y;,t+dt) = a(y;,t) +

awgi,t)dt’ i=0,1---, N-1. (72b)

In case of Solution A2.1, Equation (68a) yields
2vdt{a)(y,,t +dt) +i—(2yI L) —%a)(yo,t +dt)—%a)(y,H,t +dt)}
2pv

- iaija)(yj,udt)-Eaijw(yj,t) L i=01 .- N—1. (73)
The steady state solution of the p;r:;blem is given by -
u= lew P yy-1) (74t

We used Solution Al.1 for the numerical calculation. Numerical results are shown in Figure 1. The calculation
conditions are dp/dx=-1000, L=1, N =20, dt=0.0005, and v =0.089 . The broken lines indicate the results for the

steady state given by Equation (74). Figure 1(d) shows that the correct steady state is obtained when t is large.
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Figure 1: Distribution of velocity u and the results for the steady state given by Equation (74) for various values of t :

@) t=05;(b) t=25;(c) t=5;(d) t=15.
7.2. Applications to 2D flows

If we assume in 2D problems
oc=0inV,
u=0onS
and substitute
u=ue, +ve,, ®=we,,

X=Xe +Ye,, =26 +7€,,
N, =Nge +N.8,,

g
u,=u.g
into Equations (48), (52), and (53), we obtain
eu(x,y,t)= _ijv (x—§)¥;?y—77)2 o(&,n,t)dv; +u,,
VD =g, L(x §)§;fy— gy AN
—i (x- §)n§1+(y mn 2 (X_g)ngz_(y_n)ngl
R B e e L L L Dl i v
1 6a)(§77t) 1 (x=9)
S [ 2D o= (=) ) v, sz R e DeEm DAY,
1 (y—-m)
7o o el QUL UL
o= & +(y=n)")
1 _ 1 Mx=an, —(y-mnal
£B(xy.) - [ BEn o T A T el L
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1 (x=9) 1 (y-m)
+— V(& oS nt)dV, —— u(g,n.t)eo(s,n,1)dv, . (79)
2nL<x—§)2+(y—n)2 : 27rL<x—§)2+(y—n)2 :
7.2.1. Flow around a circular cylinder.
We assume that the center of a circular cylinder of radius R is located at the origin of the coordinates. We define the

cylindrical coordinates (r,d) as follows:

X=-rcoséd, y=rsing, (80)
where §=0 coincides with y=0, x<0. This definition is convenient when the uniform flow directs to the positive
x —axis. For simplicity, we define the computational fluid region V by

R<r<R,, 0<6<2rx. (81)
r =R, isthe virtual infinite-far boundary. We use

&=—pcosg, n=psing (82)
and

N, =C0S¢, N, =-sing. (83)

Next, we discretize the integral representations given by Equations (77) through (79). For simplicity, we divide the
circumferential and radial directions equally. In other words, the calculation region is divided into M x N elements

defined by 6 —d@9/2<60<6 +dg/2, r;—dr/2<r<r +dr/2,i=0,1,--,M-1,and j=0,1---,N-1, where d@, dr,
6., and r; are defined as follows:

do=2% gr-Ro—R (84)
M N
=(i+0.5)dg, i=0,1,---,M -1, (85a)
r,=R+(j+05)dr, j=0,1,---,N-1. (85b)
The center of the element (x;;,Y;;) are given by
X;=-T;c086, y;; =r;sing,. (86)
We discretize the integral representations given by Equations (77) through (79) using Equations (84) through (86) as
1 MEIN-T o dr/2 c0m +d6y2 y—n
eu(x,y,t) = ——mz;)an dr/zj.em_dg/z RO - pdpdga(X.,., Yo t)+U,,, (87a)
h+dr/2 p6m+d6/2 X—
ST 303 S pdpdd O, Yons) (87b)

7T m=0n=0

12 (x = )7+ (y = 1)

co(X y,t) = 12."9m:rdd://22(x §)cc;s)¢+((;/ Z))Sln¢Rd¢ o(—-Rcosd,,,Rsing,,,t)

M1, _ _
LS X E)SING+ (Y ~MO0SP s B(_Reos g, Rsind, 1)
2mv popim=d0z (X=&) +(y—-1n)

MEIN=D a2 o +
A o O+ ()7 ) pipap Yo

27Z'szOn 0.[ —dr/2 Jom -dej2 ot

1 MEINZD 2 6 +de)2 x=9&)
27rv ZZI dr/z.[em—da/z (X—§)2 +(y—77)2 oleVolo /U] GRS § T2/ 0 SR VAR o)
1 MZ:]-N l.‘-rn+dr/2j‘9m+d‘9/2 (y—’7)

27TVm S mdr/2dom=d0/2 (x — £)% + (y — 17)

&B(x, yt)+ ZIT+dd;/22(X )cc;s)¢+8/ n;SIMRd;éB( Rcosd,,,Rsing,,,t)

_v Hm+d6/2(x &)sing + (y—n)cos g .
_zﬂzé)jem—de/z =2+ (y=n)’ Rdgw(~Rcosd,,Rsing,,t)
1 M-IN-1 Iy +dr/2 +6m +d6/2 (X—é:)

D 2P XIS e v e

1 M-1N-1 I +dr/2 6m +d6)/2 (y_’])
mz;) Z j e meda =) 1 (Y1)’ PAEAPUX e, Yin 1) (X Yo 1) - (89)

2 pdpd¢v(xmn ! ymn vt)a)(xmn ' ymn ’t) ! (88)

2 pdpd¢v(xmn ' ymn ’t)w(xmﬂ 1 ymn ’t)
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If we consider the integral representation given by Equation (89) of B on the surface of the cylinder, the integral
representation is an integral equation with respect to B(—Rcosé, Rsiné,t) . However, caution is required, because the
equation is a singular integral equation. We can solve the equation using the property of the kernel function:

(x=¢)cosg—(y—n)sing _ —R(cos & —cosg)cosg—R(sind—sing)sing 1 —cos(d—-¢)+1 1

2 2 2 2 2 (ai : 2 - b ! (90)
xX=&"+(y-n) R“(cos @ —cos ¢)° + R“(sin @ —sin ¢) R 2-2cos(0—¢) 2R

If we denote the right-hand side of Equation (89) as f(X,y,t), then Equation (89) becomes on the surface of the cylinder
B(—Rcos ¢, Rsing,t) + B(—Rcos ¢, Rsing,t) =2 f (~Rcos ¢, Rsing,t) . (91)

Taking the average with respect to ¢, we have
B(—Rcos ¢, Rsing,t) = f (-Rcos ¢, Rsing,t) . (92)

We then obtain

B(—Rcos ¢, Rsing,t) =2 f (—Rcos ¢, Rsing,t) — f (~Rcos ¢, Rsing,t) . (93)

Next, we present an algorithm for the numerical calculation. Using Solution A1.2 with the integral representations
given by Equations (87) through (89):

(1) Assume o(x,t) onlIPattime t.

(2) Obtain u(x,t) on IP and BP using Equation (87).

(3) Solve the boundary integral equation given by Equation (89) for B(x,t) on BP.

(4) Solve the integral equation given by Equation (88) for dw(x,t)/ot on IP and w(x,t) on BP.

(5) Obtain e(x,t+dt) from m(x,t+dt) =o(x,t)+ (Go(xt)/ot)dt .

(6) Make the time t +dt and repeat the process.
In Step (1), o(x,t) is known at t =0 from the initial condition. In Step (2), u(x,t) is obtained by evaluating the integral
on the right-hand side of Equation (87). In step (3), if we substitute u(x,t) and ®(x,t) on the right-hand side of
Equation (89) and consider on BP, Equation (89) is an integral equation for the unknown B(x,t). If we consider
Equation (88) on IP and BP, then Equation (88) is an integral equation for the unknowns dw(x,t)/ot on IP and @(x,t)
on BP. In step (4), we solve the integral equation for the unknowns dm(x,t)/ot on IP and @(x,t) on BP. In step (5), we
obtain @(x,t+dt) on IP. At every time step, we can calculate the slip of the tangential velocity on the surface of the
cylinder using the difference of the tangential component of u(x,t) obtained by Equation (87) and that obtained by the

boundary condition. We must adjust the vorticity in the elements adjacent to the surface of the cylinder using Equation
(100).

Numerical calculations are conducted by using the discretized equations given by Equation (87) through (89). We
must evaluate the integrals on the right-hand side of these equations numerically. For example, the integrals on the right-
hand side of Equation (87) are calculated as follows. We divide an element into M, x N, sub-elements as

M, N,
6., =0, —-05d6+(m +05)dd,, r, =6, —0.5d6+(n, +0.5)dr,, (94b)
lelnl = _ernl Cosglml ' ylmlnl = ernl Sln glmlnl (940)
and approximate the integrals as
f+dr/2 p0m+d6/2 X—& M1-INg -1 X—% -
pdodg = r,dr,dé, , (95a)
-‘-rn—dr/Z-Lm—de/Z (X_§)2 +(y_77)2 n}lzzloné)(x_xlmlm)z_’_(y_ylmnl)z e
f+dr/2 0m+d6/2 y-n M1-INg -1 Y-V, .
pdpde = r.dr,dé, . (95b)
J-rn—dr/z.[@m—de/z (X_é:)z +(y_77)2 mlzz‘?)r;) (X_X:Lmln_]_)z +(y_y1mln1)2 s

The pressure p is obtained using Equation (6). In other words, for the pressure p and the pressure coefficient C,,, we
use

p—pw:p{B—%(u-u—ux-uw)] (96a)
c,~{E=Fe). (960)
2 PU,

The frictional stress = and the coefficient of friction C; on the surface of the cylinder are calculated as
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r= y[%} — —ua(R,6,1) (972)
or J_q
T
=—. (97b)
bl
The pressure drag D, friction drag D; , and total drag D, are obtained as
D, = peosRde, D, =["zsingRde, D, =D, +D; , (98)
and the pressure drag coefficient C, ,, friction drag coefficient C,, ; , and total drag coefficient C,, are obtained as
D, D,
CDp:%;ﬁzﬁi' Df=%253557CDt=CDp+CDf- (98b)
The pressure lift L, friction lift L, , and total lift L, are obtained by
L,=[ psindRdA, L, = [ reosoRdG, L =L, +L,, (99a)
and the pressure lift coefficient C, , friction lift coefficient C,_, and total lift coefficient C,, are obtained as
L, L
Lp:m' Lf:m!CLIZCLp_FCLf' (99b)

A. Case in which no Karman vortex train exists

In the following calculations, we specify u, =U =1 at t =0 and keep the condition. Hence, slip occurs on the surface
of the cylinder at t =0. We calculate the vorticity due to the slip and add to the vorticity in the elements adjacent to the
surface of the cylinder. The slip due to the error of the calculations is also treated similarly. Namely, we add Aw given
by

u,(R,6,t)

dt

to the vorticity in the elements adjacent to the surface of the cylinder. We use R=0.5, p=1000, M; =2 and N, =2.

Aw(R+dr/2,0,t) = (100)

First, we present the case in which v =0.1. The Reynolds number R, :
2RU

n

R (101)

14
is 10 . We assume that R, =8, M =40, N=20, dt=0.01, dr, =0.125 (Courant number in the radial direction:

Cy, =Udt/dr, =0.08), and dr,_, =0.75. We used an unequal division in the radial direction. Figure 2 shows the radial
division. We followed Vinokur’s method [9] for the unequal division.

0.8 -
07;
06;
05
=04+
0.3
0.2+ -

0.1+

0 10 20

Figure 2: Distribution of element size dr, in the radial direction.
First, we verified the convergence of the calculation conducting a calculation with a number of total time steps (NTS)
of 3200 . In Figure 3, we show the convergence of the integral of the vorticity in the upper half space
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Ro 7 . Ro 27 . Ro p27
IR _[O w(r,0)rdrd@ , that in the lower half space IR L w(r,0)rdrd@ and that in the whole space IR L w(r,0) rdrdg ,

and the pressure drag coefficient C, ,, friction drag coefficient C,, , and total drag coefficientC,,, when t —oo. The
convergence appears to be satisfactory.

(’Dupha\f' mlowhali' mtota\
W N = O = N W
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124 (b)
_ 10 E CDP
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Figure 3: Convergence of solution as t — oo (a) Vorticity integrals I:O Ioﬂw(r,e) rdrdg , j:o IZHw(r,H) rdrdé and

j:o Jj”w(r,@) rdrd@ ; (b) Drag coefficients Cj, ,, Cp; and Cp,.
The effect of the radial mesh size dr or the Courant number C,,, =Udt/dr, on the numerical results is significant.
Table 1: Effects of radial mesh size dr or the Courant number C, =Udt/dr, on the numerical results (NTS=1600 or

t=16).
u, dt
Ro dry dr NCT o Cop Cor Co

o
8 0.1667 0.75 0.06 1.501 1.220 2.720
8 0.125 0.75 0.08 1.515 1.222 2.737
8 0.1 0.75 0.10 1.523 1.224 2.747
8 0.08 0.75 0.125 1.529 1.228 2.756
8 0.0667 0.75 0.15 1.532 1.231 2.763
8 0.125 0.5 0.08 1.515 1.222 2.737
8 0.125 1.0 0.08 1.515 1.221 2.736
6 0.125 0.563 0.08 1.524 1.227 2.752
10 0.125 0.938 0.08 1.512 1.220 2.732

In Figure 4, the distribution of the pressure coefficient C, and friction coefficient C; on the surface of the cylinder at
t=16 for the case in which R, =8, dr, =0.125, and dr , =0.75 are shown where C,  refers to C obtained by the

potential theory. Since the distributions of the pressure and friction coefficients are symmetric with respect to the
x —axis, lift is not generated. A separation bubble is formed as time passes.
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Figure 4: Distribution of the pressure coefficient C; and the friction coefficient C,
on the surface of the cylinder (t =16).

When the numerical results are examined in detail for the case in which v =0.05, @ was found to be wavy in the
neighborhood of the outer boundary when 150 < & <210 . Although this appears to be a Karman vortex, since the
Reynolds number R, =2RU/v was 20, this phenomenon cannot be Karman vortex. This indicates us that we should
place the outer boundary further away. Then, we introduced a fictitious boundary condition at the outer boundary such as

o’w V4
=0onr=R,, =<6< 102
and used
Dy =20 ,— @By fOor M/4<i<3M/4. (103)

The condition given by Equation (103) corresponds to the condition given by Equation (102) when dr, , =dr,_,. The

numerical results were improved significantly.

Even if we introduce

ow T
—=0onr=R,, =<0<x 104
or Ro 2 (104)

on the outer boundary instead of the condition given by Equation (102) and use
Dy, =@y, Tor M/4<i<3M/4, (105)
the numerical results were similarly improved.
B. Case in which a Karman vortex train exists
We next consider the case in which the kinematic viscosity v =0.01. Since Reynolds number R, =2RU/v is 100, a

Karman vortex is generated. Although the Karman vortex is generated naturally in numerical calculation, a significant
number of time steps is required. In order to accelerate the calculation, we impose an artificial stimulus. We add the
vorticity @, (i=01---,M —1) in the elements adjacent to the surface of the cylinder —a/M/dr, during time steps 25

through 49 and +«/M /dr, during time steps 50 through 74 . In the following calculations, we use a =0.1. As shown

in Figure 5, we used a rectangular area following the FEM calculations by Brooks and Hughes [7] and Tezduyar, Liou
and Ganjoo [8]. The center of the circular cylinder is placed at the origin of the coordinates. The radius R of the cylinder

is 0.5, the width 2R, of the calculation region is 16.0, the length X, of the wake region (or the region x>0) is 15.5,
and the length of the region R, + X,, is 23.5. The number of the elements M in the circumferential direction is 64 , the
number of the elements N in the radial direction is 20, and the number of the elements N,, of the wake (or the region
R, <x< Xy, =Ry <Y <R,) in the direction of x—axisis 20. The radial size of the element dr, of the element adjacent
to the surface of the cylinder is 0.06 (C,, =Udt/dr, =0.5) and the radial size dr,_, of the farthest elements is 0.75. The
time increment dt is 0.03. Figure 5 shows the calculation region and the division into elements.
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Figure 5: Calculation region and division into elements.

The vorticity integrals, drag coefficients and lift coefficients are shown in Figure 6. Since Karman vortex trains are
generated in the wake, the drag and lift coefficients are oscillatory. The Strouhal number Str =2fR/U of the steady
oscillation is 0.18 where f is the frequency of Karman vortex, and the variations of the total drag coefficient C, and
the total lift coefficient C,, are 1.35 to 1.38 and —0.29 to +0.29, respectively. The numerical results are close to the
experimental results [10] and [11]. In these calculations, we consider a condition on the outer boundary:

2
ZX?=0 on X=Xy, —Ry <y <R, (106)

and impose the following condition:

Dping 1= 2P Ny 2~ Puing -3 TO7 3M/8<i<5M/8, (107)
where a,; ; is the vorticity of the element (i, j) inregion 1 (R, <x< X, , =R, <y <Ry). Furthermore, we also
consider conditions:

w=0 on Ry<x< X, y=%R, (108)
and impose the following conditions:
@, ;=0 for 0<j<N,, (109a)
D s =0 fOor 0<j<N,, . (109b)
Instead of Equations (106) and (107), we may consider the outer boundary condition:
z—“):o on x=X,, -R, <y<R, (110)
X
and impose the following condition:
Dping 1= Puing 2 TOr 3M/8<i<5M/8. (111)

We obtain similar numerical results in this case.
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Figure 6: Change of vortex integrals, drag coefficients and lift coefficients with time: (a) Vorticity integrals
Ro p7 Ro 27
LOL w(r,0) rdrdé , j;’j” w(r,0) rdrdd

and j:o J‘Oha)(r,e) rdrd@ ; (b) Drag coefficients Cp,,, Cp; and Cp, ; (c) Lift coefficients C,,, C; and C, .

In Figure 7, we show the space distributions of the vorticity, pressure coefficient and velocity components at t =90 .
The solid and dashed lines mean the positive and negative values of the corresponding quantities, respectively.

Figure 7: Space distribution of vorticity, pressure coefficient and velocity at t =90 : (a) Vorticity @ ; (b) Pressure
coefficient C; (c) Velocity component u in the x —direction; (d) Velocity component v in the y — direction.

In the above numerical results, the number of division M in the € — direction was 64 . We varied M and studied the
effects. The results are shown in Figure 8. If we increase M , then C,, C,, and Str converge to constant values. We
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examined the boundary condition on the surface of the cylinder and found that the satisfaction of the boundary condition
was improved better when M is increased.
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Figure 8: Effect of division number M in the 8- direction on the total drag coefficient, total lift coefficient, and
Strouhal number: (a) Total drag coefficient C, ; (b) Total lift coefficient C,, ; (c) Strouhal number Str.

In the following, the computational results are compared with the experimental ones. Figure 9 shows a comparison of
the calculated pressure coefficient C, with the experimental one by Grove et al. [10] at R, =40. The calculation

conditions are as follows: Ry,=8, R=05, M=64, N=20, dr,=0.05, dr,, =075, N, =20, X, =155,
dx, =0.375, p=1000, v=0.025, dt=0.025, and NTS=2000 . The Reynolds number Rn=2UR/v , Courant
number in the r—direction C, =Udt/dr, , and Courant number in the r —direction C,, =Udt/(Rd6) are 40, 0.5093,
and 0.5, respectively. The calculated C,, appears to be appropriate.

[ — Present Cal.
104 ™ " Exp. by Grove etal. [10]
.
N
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Figure 9: Pressure coefficient C, on surface of cylinder at R, =40 (t=50).
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In Figure 10, the calculated total drag coefficient C, is compared with the experimental one [11] with the various
Reynolds number R, . The comparison of C, between the calculation and the experiment appears to be appropriate. The
calculation conditions are presented in Table 2. The time in which C,, is calculated is equal to TNSxdt in Table 2. C
and R in the table refer to the circular and rectangular regions used in the calculations.

500 4
04 [ = Present Calculation|

Experiment [11]

0.1 T T T 1
0.1 1 10 100 1000

Rn

Figure 10: The comparison of C, between the calculation and the experiment with various Reynolds number R, .

Table 2: The calculation conditions for the numerical results in Figure 10.
#1 | #2 | #3 | #4 | #5 | #6 #7 #8 #9 #10 | #11 | #12 #13

R |01 [02[05] L | 2 | 5 | 10 | 20 | 40 | 40 | 100 | 200 | 500
C, | 822513252126 (690|383 278 | 199 | 147 | 147 | 136 | 13 | 0.80
R 05 [05 [ 05| 05[05[ 05| 05 | 05 | 05 | 05 | 05 | 05 | 05
U 10 |10 |10 [ 10 [ 10 | 10| 10 | 10 | 1.0 | 10 | 1.0 | 1.0 | 10
v_ | 10050 | 20 [ 1.0 [ 05 | 02 | 04 | 0.05 | 0.025 | 0.025 | 0.01 | 0.005 | 0.002
Rg. [ C | C | C|CcC[cl[c][ c C C R | R R R
R, | 160 160|80 80 |80 |80 | 80 | 80 | 80 | 80 | 80 | 80 | 60
M 16 | 16 | 16 | 24 | 24 | 24 | 32 | 32 | 32 | 64 | 64 | 64 | 64
N 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20
Xy 155 | 155 | 23 | 23
N,, 20 | 20 | 20 | 20

dr, 0.7 1035]035(035|035|035| 0125 | 0.125 | 0.125 | 0.05 | 0.06 | 0.06 | 0.06
10°c,, | 0.22 1 045045357 | 714|143 | 80 80 80 500 | 500 | 250 125
1°c,, | 0.8 | 08 | 08 | 9.6 | 191|382 101.9 | 101.9 | 101.9 | 509 | 611. | 305.6 | 152.8

o, | 20 [ 20 [ 20 |10 [ 10| 10| 075 | 075 [ 0.75 | 0.75 | 0.75 | 0.75 | 0.75
10°dt | 016 [ 0.16 | 016 | 1.25| 25 | 5 | 10 | 10 | 10 | 25 | 30 | 15 | 75

a 0 0 0 0 0 0 0 0 0 0.1 | 0.05 | 0.025
TNS 855 | 6 6 3 3 2 1.6 1.6 1.6 2 3 6 12

1000

o

In Figure 11, the very interesting change of the pressure coefficient C, and the friction coefficient C; on the surface

of the cylinder with the change of the Reynolds number is shown. In the figure, C refers to C, obtained by the

p_pt
potential theory. The time in which C, and C, are calculated is equal to TNSxdt in Table 2.
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Figure 11: Change of pressure coefficient Cp and friction coefficient C; with the Reynolds number R, : (a) R, =0.1;
(b) R,=1;(c) R,=10; (d) R, =100.

8. CONCLUSIONS

A set of integral representations is obtained using a fundamental solution of a differential-type boundary value
problem. Unknown variables of the boundary value problem can be determined solving a set of integral equations
derived from the set of integral representations. In the present paper, a boundary value problem expressed by a set of
integral representations is referred to as an integral-type boundary value problem. Two types of numerical calculations
were considered, 1D and 2D problems. Hagen-Poiseuille flows were discussed as 1D problems and revealed the basic
aspects of the integral representation method. Numerical calculations of laminar viscous flows around a circular cylinder
in a uniform flow were examined as 2D problems, and the obtained results were appropriate in comparison with
experiments. Important characteristics of the integral representation method (IRM) were clarified through the
calculations.

By using the IRM, more precise calculation results may be obtained by using a narrower calculation region and a
coarser mesh division. This was confirmed by the numerical calculations discussed herein.

Unlike FEM, as seen from that constant distribution of the unknown variables is possible, IRM may not assume the
continuity of the unknown variables between elements from the beginning. It would be safe to say this is a big advantage
of IRM. In the case of IRM, a higher-order distribution may be introduced easily. By introducing the implicit method in
time progression, a drastic improvement of the accuracy, stability and computational efficiency could be expected.
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10. LIST OF SYMBOLS

p . density of fluid

v . kinematic viscosity of fluid

e,, e, and e;: base vectors of Cartesian coordinates in the fluid region
V : fluid region

t: time

X=X, = Xe€, +X,8, +X&, =(X,Y, Z) : position vector

E=Ce =6 +&e,+5e, =(&n, &) position vector

u(x,t) =u,(x,t)e, =ue, +u,e, +u.e, = (u,v,w): velocity vector
p(x,t) : pressure

V =e, 0/0x, : nabla operator

o : source of fluid per unit volume

® : vorticity

B : total pressure

p, : pressure at infinity

S : body surface

uy : fluid velocity on body surface

N : unit outward normal of the boundary surface
#(X) : velocity potential

G(x,&) : fundamental solution of Laplace operator
E=Ce =26 +&e,+5e, =(&n, &) position vector
A, = V2 =5%/oxox, - Laplace operator

d(x,&) : Dirac’s delta function

£(X) : function befined by Equation (17)

r(x,&) =| x—¢&]|: radial distance

S, . infinite boundary

u,, : uniform flow

A: defined by Equation (49)

C : defined by Equation (49)

dt : differential of time

®: z component of vorticity o
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L : used in defining calculation region, for example 0<y <L
N : number of element
dy : length of element

y; : midpoint of element i
a;;, agp; - defined by Equation (65)
Y. - boundary coordinate

R : radius of circular cylinder
(r,0), (p,¢): cylindrical coordinates

R, : radius of virtual infinite-far boundary used in numerical calculation

(r;,6), (r,,6,): center of element (j,i), (n,m) or ij, mn

M, N : number of elements in circumferential and radial direction

dé@, dr: equal element division in circumferential and radial directions defined by equation (84)
(%55 Yii) » (Xon» Vo) © CeNter of element defined by equation (86)

M, N, d6,, dr, €, s X s Yime » -+ - defined by equation (94)

C,, C, : pressure and friction coefficients

7 : frictional stress
4 . coefficient of viscosity

D,, Dy, D,: pressure, friction, total drags

Cp,r Gy Cp,:pressure, friction, total drag coefficient
L,, L,, L, :pressure, friction, total lifts

C., C
u, =U : uniform velocity

Aw: defined by equation (100)
R, =2RU/v : Reynolds number

Cy, =Udt/(RdO), C,, =Udt/dr, : Courant number in circumferential and radial directions

C,,: pressure, friction, total lift coefficient

Lp? MLt

dr,: dr of element ij in case of unequal element division in radial direction

NTS : number of total time steps
C, - C, obtained by potential theory

« : proportional constant of stimulus strength added on cylinder surface for certain period of time to induce rapid growth
of Karman vortex

Xy © length of wake region

Str = 2fR/U : Strouhal number

f : frequency of Karman vortex
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