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_________________________________________________________________________________ 

ABSTRACT— New nonlinear integral representations (NIRM) are derived from a nonlinear differential-type 

boundary value problem using a fundamental solution of the primary space-differential operator of the differential 

equation. Integral representations are equivalent to differential equations. A set of integral representations is an 

integral-type boundary value problem. Unknown variables of a boundary value problem can be determined by solving 

a set of integral equations obtained from a set of integral representations. In the present paper, a set of integral 

representations using the fundamental solution of the primary space-differential operator is derived for viscous flows. 

The velocity, vorticity, and pressure of the Navier-Stokes equation can be determined by solving a set of integral 

equations obtained from a set of integral representations. A new numerical solution of the Navier-Stokes equation is 

proposed based on integral representations. The integral representation method was used to obtain the numerical 

results of low-Reynolds-number laminar flows around a circular cylinder. The narrower regions and coarser meshes 

are used in the numerical calculations using the integral representation method than in those using the ordinary 

FEM. The numerical results correctly reflect the experimental ones. Unlike FEM, as seen from that constant 

distribution of the unknown variables is possible, NIRM may not assume the continuity of the unknown variables 

between elements from the beginning. It would be safe to say this is a big advantage of NIRM. 

Keywords— New integral representation method (NIRM), Primary space-differential operator, Vorticity, Navier-Stokes 

equation 

_________________________________________________________________________________ 

 

1. INTRODUCTION 

Generally speaking, a physical phenomenon is described as a boundary value problem in differential equations, which 

may be referred to as a differential-type boundary value problem. Using a fundamental solution of the differential 

equations, we can derive integral representations from the differential-type boundary value problem. If we substitute the 

boundary condition into the integral representations, we obtain the integral equations. We can determine the unknown 

variables by solving the integral equations. Namely, the integral representations are equivalent to the differential 

equations. As such, we may refer to the boundary value problem expressed by the integral representations as an integral-

type boundary value problem. 

A solution using integral representations is widely used in potential flow calculations as the boundary element 

method. In the case of viscous flow calculations, Wu conducted a series of studies [1-4] and verified the effectiveness of 

the method through numerical calculations. However, according to his principal idea, although he used integral 

representations to obtain the velocity field from the vorticity field, he used differential equations to express the 
convective diffusion of the vorticity. He also  proposed integral representations describing the convective diffusion of the 

vorticity, but these representations are different from those used in the present paper and were derived using a 

fundamental solution for the initial value problem. On the other hand, Uhlman obtained integral representations not only 

for the kinematic relations between the velocity and vorticity but also for the convective diffusion of the vorticity [5]. He 

pointed out the possibility of an integral-type boundary value problem, but did not mention how to apply his theory to 

computations and did not verify his theory through numerical calculations. 

In the present paper, we discuss the integral-type boundary value problems from a similar viewpoint as Uhlman and 

propose a new numerical method for solving the Navier-Stokes equation. The proposed method has the following 

characteristics: 

(1) Although the vorticity is the most important variables, the proposed method differs from the vortex particle 

method [6] in that the vorticity distribution is treated as that of particles. Although appropriate for treating the 
convection, the vortex particle method can’t treat the viscous diffusion precisely. The vortex particle method is 

mathematically correct for non-viscous fluid. However, in case of viscous flow, the introduction of viscous diffusion of 



Asian Journal of Engineering and Technology (ISSN: 2321 – 2462) 

Volume 02 – Issue 02, April 2014  

Asian Online Journals (www.ajouronline.com)  61 

 

vortex blob is not mathematically strict. It’s a kind of heuristic approach. Hence, it can’t give a mathematically correct 

way to increase the accuracy of the viscous diffusion effect. However, the authors admit that the vortex particle method is 

one of the practical methods and is very useful in many practical problems. The proposed method treats the diffusion as 

well as convection correctly, and as such may be suitable for discussing diffusion-dominant problems. 

(2) The present method is a unique numerical method that is based on integral representations of the velocity, 

vorticity, and pressure reported by Uhlman [5]. 

(3) Uhlman’s integral representations do not include differentiations of unknown variables by space variables. Since 

the differential operations by space variables are replaced by integral operations, we can easily introduce an irregular 

element division of the space. The proposed method would be favorable for cases in which the fluid region is 

geometrically complex and/or the boundary changes in time and the element division becomes irregular. If the boundary 

does not change in time, we are not required to obtain the inverse of the matrices at every step. Since the inverse is 

required to be obtained once at the beginning of the calculation, the load of the calculation would not increase 

significantly. 

(4) Since we need to consider only the region in which the vorticity exists, the required calculation time and computer 

memory are reduced. 

For the understanding of the readers, we add the following descriptions. Reference [12-15] were added as the results of 

survey on recent developments  with respect to integral equation method (IEM), or integral representation method (IRM), 

on unsteady Navier-Stokes equation (UNSE). These are boundary element method (BEM) or boundary integral method 
(BIM). It was not possible to find those about the idea of Uhlman by Uhlman or others. As the Solution of UNSE, there 

are time-space separate method (TSS) that handles time and space in different way  and time-space unified method 

(TSU) that treats time and space as a unit. Finite difference method  (FDM) is TSU, and Finite Element Method (FEM) is 

generally TSS, using difference equation (DE) in time and variational equation (VE) in space. This paper follows the 

TSS, and we use DE in time and IRM in space. As the fundamental solution, we use that of an appropriate space-

differential operator. We use that of Laplace operator in this paper. If we use TSU, we use IRM in unified space 

including time.In this case, it is possible to derive the BIM [12-14]. A fundamental solution of an appropriate time-space-

differential operator, for example, that of the linear unsteady diffusion problem is used. There is also a method that IRM  

is obtained for a part of the unknown variables, and the other variables are dealt with DE. For example, the relationship 

between vorticity and velocity is rewritten in the form of IRM, the so-called Biot-Savart law, and DE  is used to deal with 

the time evolution of the vorticity. In this paper, IRM covers also time evolution of the vorticity. 
In addition, the handling of nonlinear term is important in the solution of UNSE. If we treat the time evolution 

explicitly, it is simple because it does not require the iteration calculation. However, we have to reduce the time step. If 

we use implicit method, the iteration is required, but the time step can be greatly increased. From the viewpoint of the 

stability and accuracy, implicit solution is much better. 

Reference [12] derives BIM for a steady solution of the Navier-Stokes equation. Fundamental solution of Stokes 

equation is applied there. Since It gave the direction of a new development in IEM, this idea should be appreciated highly.  

Although the idea of this paper is based on Uhlman’s paper, Uhlman himself has not developed a numerical method 

specifically. The uniqueness of Uhlman’s theory is that IRM derived by Uhlman with respect to the space portion of the 

unsteady differential equations for the vorticity does not include the spatial derivatives of the unknown variables. This 

paper is intended as well to complete the theory Uhlman, were subjected to numerical concrete. I'm dealing with the 

explicit development time. 

In the present paper, we discuss the laminar flow alone and do not address the turbulent flow, but we will deal with the 
turbulent flow as the next step.  As for the turbulent flow, we think the idea of this paper is valid in a significant portion.  

First, in order to increase the stability, accuracy and computational efficiency, we will introduce the implicit method for 

time-marching. Further, in order to increase the accuracy, we use currently the constant distribution of the unknown 

variables in elements, but should use the higher distribution.  Unlike FEM, as seen from that constant distribution of the 

unknown variables is possible, IRM may not assume the continuity of the unknown variables between elements from the 

beginning. It would be safe to say this is a big advantage of IRM. On the preparation mentioned above, we intend to 

introduce a large eddy simulation. 

2. BASIC EQUATIONS OF FLUID MOTION 

We assume that the fluid is incompressible and inviscid. The density and kinematic viscosity are denoted by   and 

 , respectively, and 1e , 2e  and 3e  are the base vectors of Cartesian coordinates in the fluid region V . Here, t  is the 

time. The position vector is 332211 eeeex xxxx ii  , and the velocity vector is 332211),(),( eeeexxu uuutut ii  . 

The pressure is denoted by ),( tp x . The continuity equation and the Navier-Stokes equation in V  are, respectively, as 

     u ,                                                                                        (1) 
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where   is the nabla operator 
ii

xe , and   is the source of fluid per unit volume. 

The vorticity ω  is defined as 

    uω  .                                                                                     (3) 

If uu )(   is rewritten according to the vector formula as 

    ωuuuuu  )(
2

1
)( ,                                                                       (4) 

then the Navier-Stokes equation, Equation (2), is modified as 

     
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where B  is the total pressure and is given as 
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If we operate   on both sides of Equation (5), we obtain 

    )()( ωωu
ω







t
.                                                                 (7) 

Applying vector formulas, we have 

    ωωuuωuωωuωuuωωu  )()()()()()()( ,                                 (8a) 
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22)()(  ,                                                               (8b) 

Equation (7) is then written as 

    ωωuωωu
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If   is operated on both sides of Equation (5), we obtain 

    
 22 )( 



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t
B ωu .                                                                 (10) 

If we assume that the boundary surface S  is the body surface and that the fluid velocity on S  is Bu , then the 

boundary condition on S  is given by 

    Buu  .                                                                                     (11) 

From Equation (5) , the boundary condition of B  becomes 
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where n  is the unit outward normal of the boundary surface. 

3. IRROTATIONAL FLOWS OR POTENTIAL FLOWS 

Let iixxxx eeeex  332211 , )(x  and ),( ξxG be the coordinates, the velocity potential and the fundamental 

solution of Laplace operator ii xx  22

xx  having a singularity at the point iieξξ  , respectively. Note that )(x  

and ),( ξxG  satisfy 

    )()( xxx   ,                                                                                   (13) 

    ),(),( ξxξxx  G ,                                                                               (14) 

where ),( ξx  is Dirac’s delta function. The fundamental solution ),( ξxG  is given by 
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where ||),( ξxξx r . 

 As is well known, the integral representation ),( ξxG  of )(x  is written as 
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where 
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For simplicity, we write Equation (16) as 
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When x  is in V , from Equation (18), we have 

    dVGdS
n

G

n
G

VS  
















 


 .                                                      (19) 

The velocity vector u  is given by 
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where x  is ii xe  and 
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And G  satisfies 
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Hence, from Equation (20), we have 
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After lengthy manipulation, we obtain 

      dVdS
VS   GunGnuGu )()( ,                                                (24) 

where nu   and un  express the source and vorticity distributions, respectively, on the boundary S . Hence, we know 

that the velocity vector u  is induced by the source and vorticity distributions on the boundary S  and the source 

distribution   in V . 

4. ROTATIONAL FLOWS OR NON-POTENTIAL FLOWS 

In the case of non-potential flows, we consider the velocity vector )(xu  instead of the velocity potential )(x . Then, 

we have the kinematical equations between the velocity vector )(xu  and vorticity )(xω : 

    )()( xxu  ,                                                                                (25) 

    )()( xωxu  .                                                                               (26) 

If we operate   on both sides of Equation (26), we have 

    ωxu  )(2 .                                                                          (27) 

We call 2  as the primary space-differential operator. We can apply results similar to Equation (18) to each component 

of the vector u : 
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In Equation (28), the contributions of the source and vortex are expressed as   and ω . However, it is favorable 

if these contributions are given by an expression that does not include the space derivatives of   and ω . With respect to 

G , we use 
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With respect to ω , we apply vector formulas: 
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Substituting Equations (29) and (30) into Equation (28), we obtain 
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After lengthy manipulation, we obtain from Equation (31) 
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In the case of flows outside of S , we must take the infinite boundary S  into consideration. We assume that S  is a 

closed surface and that the flow is uniform at infinity. Since the uniform flow u  satisfies 0 u  and 0 u  

inside of S , from Equation (24), we have 
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Hence, we obtain 
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Equation (34) coincides with the results of Wu and Thompson[1] and Uhlman[5]. 

We should be cautious in shrinking the calculation region by symmetry, because the infinite boundary becomes open. 

If we consider the disturbance component, we can neglect the contribution of the infinite boundary and always derive the 

correct results. When the infinite boundary is not closed, we must modify the integral representation given by Equation 
(34). 

5. INTEGRAL REPRESENTATIONS OF VORTICITY AND TOTAL PRESSURE 

Next, we derive the integral representations of the vorticity ω  and the total pressure B . From Equation (9), 

we have 
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Using the property of the primary space-differential operator 
2 , we obtain from Equation (18) 
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We transform this integral representation into an expression that does not include the space derivatives of u  and ω  as 

far as possible. Since we have: 
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from vector formulas, we obtain 
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Substituting Equation (39) into Equation (36), we have 
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Applying a vector integral formula, we obtain 

      dVG
t

GdSGdS
n

G

n
G

VSS  






























 )()(

1
)(

1
ωu

ω
ωunω

ω
ω


 .                  (41) 

Furthermore, since GG ξxG  , the integral representation of ω  can be written as 
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This integral representation includes a space derivative nω  in a boundary integral. 

The integral representation given by Equation (42) is shown to be equal to the following representation by Uhlman [5]. 
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Uhlman’s expression does not include any space derivatives of variables u , ω  and B . 
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We now obtain the integral representation of B  below. Again, We write the differential equation given by Equation 

(10) and the boundary condition given by Equation (12): 
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Hence, using the property of the primary space-differential operator 2 , we obtain from Equation (18) 
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Equation (46) is shown to be equal to the integral representation of B  obtained by Uhlman [5]: 
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6. GENERAL RESULTS INCLUDING RESULTS OTHER THAN 3D RESULTS 

We generalize the integral representations in 3D obtained above to other dimensions following Wu and Thompson 

[1]. With respect to velocity u , Equation (32) is generalized as 
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where V  refers to the volume area in 3D, the surface area in 2D and the line area in 1D, respectively, and S  refers to the 

boundary surface in 3D, the boundary line in 2D and the boundary point in 1D. Moreover, A  and C  are defined as 

follows 
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With respect to the vorticity ω , we generalize Equation (42) as 
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where 
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If we generalize Equation (43) obtained originally by Uhlman [5], we obtain 
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In 1D flow, the second surface integral including B  on the right-hand side should be replaced by 3)2(
1

eyL
dx

dp



 

considering the contribution from the infinite boundary. 

With respect to the total pressure B , Equation (47) obtained originally by Uhlman [5] is generalized as 
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7. SOLUTIONS USING INTEGRAL REPRESENTATIONS 

The integral representations given by Equations (48), (52) and (53) do not include the space derivatives of u , 

ω  and B  in any of the regional and boundary integrals. Hence, if we use the integral representations, we can 

derive a numerical solution of flow that does not require the space derivatives. The integral representation given 

by Equation (50) does not include the space derivatives in the region but does include the normal derivative of 

ω  on the boundary. 

 The solutions of flow using the integral representations are summarized below. 

 

Solution A1. Explicit solution 
A1.1. Solution using the integral representations given by Equations (48), (50) and (53): 

(1) Assume ),( txω  at time t . 

(2) Obtain ),( txu  using Equation (48). 

(3) Solve the integral equation given in Equation (50) for tt  ),(xω . 

(4) Obtain ),( dtt xω  from dttttdtt )),((),(),(  xωxωxω . 

(5) Make the time dtt   and repeat the process. 

Solve ),( tB x  from the boundary integral equation given in Equation (53) in parallel. 

 

A1.2. Solution using the integral representations given by Equations (48), (52) and (53): 

(1) Assume ),( txω  at time t . 

(2) Obtain ),( txu  using Equation (48). 

(3) Solve the boundary integral equation given in Equation (53) for ),( tB x . 

(4) Solve the integral equation given in Equation (52) for tt  ),(xω . 

(5) Obtain ),( dtt xω  from dttttdtt )),((),(),(  xωxωxω . 

(6) Make the time dtt   and repeat the process. 

 

Solution A2. Implicit solution 

A2.1. Solution using the integral representations given by Equations (48), (50) and (53): 

(1) Assume ),( txω  and ),( txu  at time t . 

(2) At dtt  , approximate tdtt  ),(xω  by dttdtttdtt )],(),([),( xωxωxω   in Equation (50) and solve 

the simultaneous integral equations given in (48) and (50) for ),( dtt xu  and ),( dtt xω . 

(3) Make the time dtt 2 . Then, return to Step (2) and repeat the process. 

Solve ),( tB x  from the boundary integral equation given in Equation (53) in parallel. 

As an alternative to solving the integral equations simultaneously, an iteration may be applied. Namely, we 

approximate ),( dtt xu  by ),( txu  and solve the integral equation given in Equation (50) for ),( dtt xω . Using 

),( dtt xω , we renew ),( dtt xu  by Equation (48). Then, using ),( dtt xu , we again solve the integral equation 

given in Equation (50) for ),( dtt xω . We repeat this process until convergence. 

 

A2.2. Solution using the integral representations given by Equations (48), (52) and (53): 

(1) Assume ),( txω  and ),( txu  at time t . 

(2) At dtt  , approximate tdtt  ),(xω  by dttdtttdtt )],(),([),( xωxωxω   in Equation (52) and 
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solve the simultaneous integral equations given in Equations (48), (52) and (53) for ),( dtt xu , ),( dtt xω  and 

),( dttB x . 

(3) Make the time dtt 2 . Then, return to Step (2) and repeat the process. 

As an alternative to solving integral equations simultaneously, an iteration may be applied. Namely, we approximate 

),( dtt xu  and ),( dttB x  by ),( txu  and ),( tB x , respectively, and solve the integral equation given in Equation 

(52) for ),( dtt xω . By using ),( dtt xω , we renew ),( dtt xu  and ),( dttB x  by Equation (48) and the boundary 

integral equation given in Equation (53), respectively. Then, using ),( dtt xu  and ),( dttB x , we again solve the 

integral equation given in Equation (52) for ),( dtt xω . We repeat this process until convergence. 

7.1. Applications to 1D flows 

As special cases of 2D flows, there are flows with 1),( eu tyu  and const1  edxdpp . In other word, these flows 

are 1D flows such as the Rayleigh flow, the Couette flow and the Hagen-Poiseuille flow. In these cases, the vorticity ω  

is directed toward z axis or 3),( eω ty . In the following discussions, we assume 0 . 

The flow region is Ly 0 . The equation of continuity is satisfied automatically, and Equations (3) and (5) become 
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If we apply the integral representation given by Equation (48) for velocity u , we have 
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Hence, we obtain 
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If we apply the integral representation given by Equation (52) for vorticity ω , we have 
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If we apply Equation (55), Equation (59) can be rewritten as 
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The integral representation given by Equation (60) is simply the 1D integral representation obtained by Equation (50) 

If we apply the integral representation given by Equation (53) for B , we have 
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We transform the 1D integral representations into algebraic equations. For simplicity, we divide the region Ly 0  

into N  equal elements of length dy  and denote the midpoint of each element as iy , 1,,1,0  Ni  . Thus, we have 

     
N

L
dy                                                                                               (62) 

and 

    dyiyi )5.0(  .                                                                                     (63) 
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We approximate Equation (60) as 
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We define ji  for IP iyy   and jBP  for BP 0y  or Ly   as 
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Then, we obtain then the algebraic equations for IP ( iy , 1,,1,0  Ni  ) and BP ( LyBP ,0 ), respectively, as 
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In the case of Solution A1.1, the algebraic equations and the time progression equation are given by 
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The total number of the unknowns of the algebraic equations is 2N : tty j  ),(  for 1,,1,0  Nj  , and ),0( t  

or yt  ),0(  and ),( tL  or ytL  ),( . The total number of equations is also 2N : N  for IP and 2  for BP. 

In this case, all of the unknown variables on IP and BP become unknowns. In other words, the method is a 

region+boundary element method. 

As an approximation, we use dyttyyt )],0(),([2),0( 0   , if ),0( t  is known. Otherwise, we use 

2),0(),(),0( 0 dyyttyt   , if yt  ),0(  is known. We use similar approximations for Lx  . In this case, the 

number of unknowns and the number of equation are both N . 

In the case of Solution A2.1, the algebraic equations are given by 
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The total number of unknowns of the algebraic equations is 2N : ),( dtty j   for 1,,1,0  Nj  , and 

),0( dtt   or ydtt  ),0(  and ),( dttL   or ydttL  ),( . The total number of equations is also 2N : N  

for IP and 2  for BP. 

In this case, we can also obtain the values of the unknown variables on BP from Equation (68b) assuming that the 

values of the unknown variables on IP are known. Substituting the values of the unknown variables on BP into Equation 

(68a), we again update the values of the unknown variables on IP. Then, we again substitute the new values of the 

unknown variables on IP into Equation (68b) for the new values of the unknown variables on BP. We can consider this 

type of iterative scheme, which corresponds to Boundary Element Method + Iteration (BEMI). 

As an approximation, we use dydttdttyydtt )],0(),([2),0( 0   , if ),0( dtt   is known. Otherwise, 

we use 2),0(),(),0( 0 dyydttdttydtt   , if ydtt  ),0(  is known. We use similar approximations 

for Lx  . In this case, the number of unknowns and the number of equations are both N . 

7.1.1. Hagen-Poiseuille flow 

We take the x axis to be in the horizontal direction and the y axis to be perpendicular to the x axis. There are 

two plates placed on the 0y  and Ly   planes. Both the lower plate on 0y  and the upper plate on Ly   are fixed. 

Instantly, we apply the constant pressure gradient dxdp  to the fluid in Ly 0 . We observe the fluid motion in 

Ly 0  relative to coordinates fixed to the plates. The flow is one-dimensional and satisfies ),( tyuu  , 0v ,  and, 

const xp . The conditions are summarized below. 

    Pressure gradient: 0 . 

    Initial value: From 0)0,( iyu , 0)0,( iy ,                                                             (69) 

      Boundary value: From 0),(),0(  tLutu , 
dx

dp

y

tL

y

t



 1),(),0(
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


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


,                                   (70) 

    Approximation: ),(),0( 0 tyt   , ),(),( 1 tytL N ,                                                 (71) 

where Equation (55) yields the second equation in Equation (70). In case of Solution A1.1, Equations (67a) and (67c) 

yield 
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In case of Solution A2.1, Equation (68a) yields 
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The steady state solution of the problem is given by 

    )2(
2

1
Ly

dx

dp

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                                                                         (74a) 

    )(
2

1
Lyy

dx

dp
u 


                                                                         (74b) 

We used Solution A1.1 for the numerical calculation. Numerical results are shown in Figure 1. The calculation 

conditions are 1000dxdp , 1L , 20N , 0005.0dt , and 089.0 . The broken lines indicate the results for the 

steady state given by Equation (74). Figure 1(d) shows that the correct steady state is obtained when t  is large. 
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Figure 1: Distribution of velocity u  and the results for the steady state given by Equation (74) for various values of t : 

(a) 5.0t ; (b) 5.2t ; (c) 5t ; (d) 15t . 

7.2. Applications to 2D flows 

If we assume in 2D problems 

    0  in V ,                                                                                (75a) 

    0u  on S                                                                                 (75b) 

and substitute 

    21 eeu vu  , 3eω  ,                                                                     (76a) 

    21 eex yx  , 21 eeξ   ,                                                                (76b) 

    2211 een ξξξ nn  ,                                                                          (76c) 

    1eu   u                                                                                 (76d) 

into Equations (48), (52), and (53), we obtain 
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7.2.1. Flow around a circular cylinder. 

  We assume that the center of a circular cylinder of radius R  is located at the origin of the coordinates. We define the 

cylindrical coordinates ),( r  as follows: 

    cosrx  , sinry  ,                                                                         (80) 

where 0  coincides with 0,0  xy . This definition is convenient when the uniform flow directs to the positive 

x axis. For simplicity, we define the computational fluid region V  by 

    0RrR  ,  20  .                                                                          (81) 

0Rr   is the virtual infinite-far boundary. We use 

     cos ,  sin                                                                          (82) 

and 

    cos1 ξn , sin2 ξn .                                                                         (83) 

Next, we discretize the integral representations given by Equations (77) through (79). For simplicity, we divide the 

circumferential and radial directions equally. In other words, the calculation region is divided into NM   elements 

defined by 22  dd ii  , 22 drrrdrr jj  , 1,,1,0  Mi  , and 1,,1,0  Nj  , where d , dr , 

i , and jr  are defined as follows: 
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     dii )5.0(  , 1,,1,0  Mi  ,                                  (85a) 

    drjRrj )5.0(  , 1,,1,0  Nj  .                                                          (85b) 

The center of the element ),( jiji yx  are given by 

    ijji rx cos , ijji ry sin .                                                                      (86) 

We discretize the integral representations given by Equations (77) through (79) using Equations (84) through (86) as 
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If we consider the integral representation given by Equation (89) of B  on the surface of the cylinder, the integral 

representation is an integral equation with respect to ),sin,cos( tRRB  . However, caution is required, because the 

equation is a singular integral equation. We can solve the equation using the property of the kernel function: 

       
RRRR

RR

yx

yx

2

1

)cos(22

1)cos(1

)sin(sin)cos(cos

sin)sin(sincos)cos(cos

)()(

sin)(cos)(
222222



























,          (90) 

If we denote the right-hand side of Equation (89) as ),,( tyxf , then Equation (89) becomes on the surface of the cylinder 

    ),sin,cos(2),sin,cos(),sin,cos( tRRftRRBtRRB   .                                 (91) 

Taking the average with respect to  , we have 

    ),sin,cos(),sin,cos( tRRftRRB   .                                                   (92) 

We then obtain 

    ),sin,cos(),sin,cos(2),sin,cos( tRRftRRftRRB   .                                (93) 

Next, we present an algorithm for the numerical calculation. Using Solution A1.2 with the integral representations 

given by Equations (87) through (89): 

(1) Assume ),( txω  on IP at time t . 

(2) Obtain ),( txu  on IP and BP using Equation (87). 

(3) Solve the boundary integral equation given by Equation (89) for ),( tB x  on BP. 

(4) Solve the integral equation given by Equation (88) for tt  ),(xω  on IP and ),( txω  on BP. 

(5) Obtain ),( dtt xω  from dttttdtt )),((),(),(  xωxωxω . 

(6) Make the time dtt   and repeat the process. 

In Step (1), ),( txω  is known at 0t  from the initial condition. In Step (2), ),( txu  is obtained by evaluating the integral 

on the right-hand side of Equation (87). In step (3), if we substitute ),( txu  and ),( txω  on the right-hand side of 

Equation (89) and consider on BP, Equation (89) is an integral equation for the unknown ),( tB x . If we consider 

Equation (88) on IP and BP, then Equation (88) is an integral equation for the unknowns tt  ),(xω  on IP and ),( txω  

on BP. In step (4), we solve the integral equation for the unknowns tt  ),(xω  on IP and ),( txω  on BP.  In step (5), we 

obtain ),( dtt xω  on IP. At every time step, we can calculate the slip of the tangential velocity on the surface of the 

cylinder using the difference of the tangential component of ),( txu  obtained by Equation (87) and that obtained by the 

boundary condition. We must adjust the vorticity in the elements adjacent to the surface of the cylinder using Equation 

(100). 

Numerical calculations are conducted by using the discretized equations given by Equation (87) through (89). We 

must evaluate the integrals on the right-hand side of these equations numerically. For example, the integrals on the right-

hand side of Equation (87) are calculated as follows. We divide an element into 11 NM   sub-elements as 
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and approximate the integrals as 
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The pressure p  is obtained using Equation (6). In other words, for the pressure p  and the pressure coefficient pC , we 

use 
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The frictional stress   and the coefficient of friction fC  on the surface of the cylinder are calculated as 
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The pressure drag pD , friction drag fD , and total drag tD  are obtained as 
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and the pressure drag coefficient pDC , friction drag coefficient fDC , and total drag coefficient tDC  are obtained as 
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The pressure lift pL , friction lift fL , and total lift tL  are obtained by 
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cos RdL f , fpt LLL  ,                                           (99a) 

and the pressure lift coefficient pLC , friction lift coefficient fLC  and total lift coefficient tLC  are obtained as 
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A. Case in which no Karman vortex train exists 

In the following calculations, we specify 1 Uu  at 0t  and keep the condition. Hence, slip occurs on the surface 

of the cylinder at 0t . We calculate the vorticity due to the slip and add to the vorticity in the elements adjacent to the 

surface of the cylinder. The slip due to the error of the calculations is also treated similarly. Namely, we add   given 

by 

    
dt

tRu
tdrR

),,(
),,2(


                                                                  (100) 

to the vorticity in the elements adjacent to the surface of the cylinder. We use 5.0R , 1000 , 21 M  and 21 N . 

First, we present the case in which 1.0 . The Reynolds number nR ： 

    


RU
Rn

2
                                                                                   (101) 

is 10 . We assume that 80 R , 40M , 20N , 01.0dt , 125.00 dr  (Courant number in the radial direction: 

08.00  drUdtC rN ), and 75.01 Ndr . We used an unequal division in the radial direction. Figure 2 shows the radial 

division. We followed Vinokur’s method [9] for the unequal division. 

 
Figure 2: Distribution of element size idr  in the radial direction. 

First, we verified the convergence of the calculation conducting a calculation with a number of total time steps ( NTS ) 

of 3200 . In Figure 3, we show the convergence of the integral of the vorticity in the upper half space 
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and the pressure drag coefficient pDC , friction drag coefficient fDC , and total drag coefficient tDC , when t . The 

convergence appears to be satisfactory. 

 

Figure 3: Convergence of solution as t : (a) Vorticity integrals 
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0  ; (b) Drag coefficients pDC , fDC  and tDC . 

The effect of the radial mesh size dr  or the Courant number 0drUdtC rN   on the numerical results is significant. 

Table 1: Effects of radial mesh size dr  or the Courant number 0drUdtC rN   on the numerical results ( 1600NTS  or 

16t ). 

0R  0dr  19dr  
0dr

dtu
C rN

  DpC  DfC  
DtC  

8 0.1667 0. 75 0.06 1.501 1.220 2.720 

8 0.125 0.75 0.08 1.515 1.222 2.737 

8 0.1 0.75 0.10 1.523 1.224 2.747 

8 0.08 0.75 0.125 1.529 1.228 2.756 

8 0.0667 0.75 0.15 1.532 1.231 2.763 

       

8 0.125 0.5 0.08 1.515 1.222 2.737 

8 0.125 1.0 0.08 1.515 1.221 2.736 

       

6 0.125 0.563 0.08 1.524 1.227 2.752 

10 0.125 0.938 0.08 1.512 1.220 2.732 

 

In Figure 4, the distribution of the pressure coefficient pC  and friction coefficient fC  on the surface of the cylinder at 

16t  for the case in which 80 R , 125.00 dr , and 75.01 Ndr  are shown where ptpC _  refers to pC  obtained by the 

potential theory. Since the distributions of the pressure and friction coefficients are symmetric with respect to the 

x axis, lift is not generated. A separation bubble is formed as time passes. 
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Figure 4: Distribution of the pressure coefficient pC  and the friction coefficient fC  

on the surface of the cylinder ( 16t ). 

When the numerical results are examined in detail for the case in which 05.0 ,   was found to be wavy in the 

neighborhood of the outer boundary when 210150  . Although this appears to be a Karman vortex, since the 

Reynolds number RURn 2  was 20 , this phenomenon cannot be Karman vortex. This indicates us that we should 

place the outer boundary further away. Then, we introduced a fictitious boundary condition at the outer boundary such as 

    0
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2
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r


 on 0Rr  , 


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2
                                                              (102) 

and used 

    321 2   NiNiNi   for 434 MiM  .                                                 (103) 

The condition given by Equation (103) corresponds to the condition given by Equation (102) when 21   NN drdr . The 

numerical results were improved significantly. 

Even if we introduce 

    0




r


 on 0Rr  , 




2
                                                              (104) 

on the outer boundary instead of the condition given by Equation (102) and use 

    21   NiNi   for 434 MiM  ,                                                         (105) 

the numerical results were similarly improved. 

B. Case in which a Karman vortex train exists 

We next consider the case in which the kinematic viscosity 01.0 . Since Reynolds number RURn 2  is 100 , a 

Karman vortex is generated. Although the Karman vortex is generated naturally in numerical calculation, a significant 

number of time steps is required. In order to accelerate the calculation, we impose an artificial stimulus. We add the 

vorticity )1,,1,0(0  Mii   in the elements adjacent to the surface of the cylinder 0drM  during time steps 25  

through 49  and 0drM  during time steps 50  through 74 . In the following calculations, we use 1.0 . As shown 

in Figure 5, we used a rectangular area following the FEM calculations by Brooks and Hughes [7] and Tezduyar, Liou 

and Ganjoo [8]. The center of the circular cylinder is placed at the origin of the coordinates. The radius R  of the cylinder 

is 5.0 , the width 02R  of the calculation region is 0.16 , the length WX  of the wake region (or the region 0x ) is 5.15 , 

and the length of the region WXR 0  is 5.23 . The number of the elements M  in the circumferential direction is 64 , the 

number of the elements N  in the radial direction is 20 , and the number of the elements WN  of the wake (or the region 

WXxR 0 , 00 RyR  ) in the direction of x axis is 20 . The radial size of the element 0dr  of the element adjacent 

to the surface of the cylinder is 06.0  ( 5.00  drUdtCNr ) and the radial size 1Ndr  of the farthest elements is 75.0 . The 

time increment dt  is 03.0 . Figure 5 shows the calculation region and the division into elements. 
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Figure 5: Calculation region and division into elements. 

The vorticity integrals, drag coefficients and lift coefficients are shown in Figure 6. Since Karman vortex trains are 

generated in the wake, the drag and lift coefficients are oscillatory. The Strouhal number UfRStr 2 of the steady 

oscillation is 18.0 where f  is the frequency of Karman vortex, and the variations of the total drag coefficient DtC  and 

the total lift coefficient LtC  are 35.1  to 38.1  and 29.0  to 29.0 , respectively. The numerical results are close to the 

experimental results [10] and [11]. In these calculations, we consider a condition on the outer boundary: 

    0
2

2






x


 on WXx  , 00 RyR                                                               (106) 

and impose the following condition: 

    3,12,11,1 2  
WNiWNiWNi   for 8583 MiM  ,                                            (107) 

where ji,,1  is the vorticity of the element ),( ji  in region 1  ( WXxR 0 , 00 RyR  ). Furthermore, we also 

consider conditions: 

    0  on WXxR 0 , 0Ry                                                               (108) 

and impose the following conditions: 

    0,0,1 j  for WNj 0 ,                                                                (109a) 

    0,14,1  jM  for WNj 0 .                                                            (109b) 

Instead of Equations (106) and (107), we may consider the outer boundary condition: 

    0




x


 on WXx  , 00 RyR                                                            (110) 

and impose the following condition: 

    2,11,1  
WNiWNi   for 8583 MiM  .                                                   (111) 

We obtain similar numerical results in this case. 
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Figure 6: Change of vortex integrals, drag coefficients and lift coefficients with time: (a) Vorticity integrals 
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In Figure 7, we show the space distributions of the vorticity, pressure coefficient and velocity components at 90t . 

The solid and dashed lines mean the positive and negative values of the corresponding  quantities, respectively. 

 
Figure 7: Space distribution of vorticity, pressure coefficient and velocity at 90t : (a) Vorticity  ; (b) Pressure 

coefficient pC ; (c) Velocity component u  in the x direction; (d) Velocity component v  in the y direction. 

In the above numerical results, the number of division M  in the  direction was 64 . We varied M  and studied the 

effects. The results are shown in Figure 8. If we increase M , then DtC , LtC , and Str  converge to constant values. We 
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examined the boundary condition on the surface of the cylinder and found that the satisfaction of the boundary condition 

was improved better when M  is increased. 

 
Figure 8: Effect of division number M  in the  direction on the total drag coefficient, total lift coefficient, and 

Strouhal number: (a) Total drag coefficient DtC ; (b) Total lift coefficient LtC ; (c) Strouhal number Str . 

In the following, the computational results are compared with the experimental ones. Figure 9 shows a comparison of 

the calculated pressure coefficient pC  with the experimental one by Grove et al. [10] at 40nR . The calculation 

conditions are as follows: 80 R , 5.0R , 64M , 20N , 05.00 dr , 75.01 Ndr , 20WN , 5.15WX , 

375.0Wdx , 1000 , 025.0 , 025.0dt , and 2000NTS . The Reynolds number URRn 2 , Courant 

number in the r direction 0drUdtCNr  , and Courant number in the r direction )(  RdUdtCN   are 40 , 5093.0 , 

and 5.0 , respectively. The calculated pC  appears to be appropriate. 

 

 
Figure 9: Pressure coefficient pC  on surface of cylinder at 40DR ( 50t ). 
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In Figure 10, the calculated total drag coefficient DtC  is compared with the experimental one [11] with the various 

Reynolds number nR . The comparison of DtC  between the calculation and the experiment appears to be appropriate. The 

calculation conditions are presented in Table 2. The time in which DtC  is calculated is equal to dtTNS  in Table 2. C  

and R  in the table refer to the circular and rectangular regions used in the calculations. 

 
Figure 10: The comparison of DtC  between the calculation and the experiment with various Reynolds number nR . 

 

Table 2: The calculation conditions for the numerical results in Figure 10. 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 

nR  0.1 0.2 0.5 1 2 5 10 20 40 40 100 200 500 

DtC  82.2 51.3 25.2 12.6 6.90 3.83 2.78 1.99 1.47 1.47 1.36 1.3 0.80 

R  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

U  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

  10.0 5.0 2.0 1.0 0.5 0.2 0.1 0.05 0.025 0.025 0.01 0.005 0.002 

              

Reg. C C C C C C C C C R R R R 

0R  16.0 16.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 6.0 

M  16 16 16 24 24 24 32 32 32 64 64 64 64 

N  10 10 10 10 16 16 16 16 16 20 20 20 20 

WX           15.5 15.5 23 23 

WN           20 20 20 20 

0dr  0.7 0.35 0.35 0.35 0.35 0.35 0.125 0.125 0.125 0.05 0.06 0.06 0.06 

NrC310  0.22 0.45 0.45 3.57 7.14 14.3 80 80 80 500 500 250 125 

NC310  0.8 0.8 0.8 9.6 19.1 38.2 101.9 101.9 101.9 509 611.

2 

305.6 152.8 

1Ndr  2.0 2.0 2.0 1.0 1.0 1.0 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

dt310  0.16 0.16 0.16 1.25 2.5 5 10 10 10 25 30 15 7.5 

  0 0 0 0 0 0 0 0 0 0 0.1 0.05 0.025 

1000

TNS  
8.55 6 6 3 3 2 1.6 1.6 1.6 2 3 6 12 

 

In Figure 11, the very interesting change of the pressure coefficient pC  and the friction coefficient fC  on the surface 

of the cylinder with the change of the Reynolds number is shown. In the figure, ptpC _  refers to pC  obtained by the 

potential theory. The time in which pC  and fC  are calculated is equal to dtTNS  in Table 2. 
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Figure 11: Change of pressure coefficient pC  and friction coefficient fC  with the Reynolds number nR : (a) 1.0nR ; 

(b) 1nR ; (c) 10nR ; (d) 100nR . 

8. CONCLUSIONS 

A set of integral representations is obtained using a fundamental solution of a differential-type boundary value 

problem. Unknown variables of the boundary value problem can be determined solving a set of integral equations 

derived from the set of integral representations. In the present paper, a boundary value problem expressed by a set of 

integral representations is referred to as an integral-type boundary value problem. Two types of numerical calculations 

were considered, 1D and 2D problems. Hagen-Poiseuille flows were discussed as 1D problems and revealed the basic 

aspects of the integral representation method. Numerical calculations of laminar viscous flows around a circular cylinder 

in a uniform flow were examined as 2D problems, and the obtained results were appropriate in comparison with 

experiments. Important characteristics of the integral representation method (IRM) were clarified through the 

calculations. 
By using the IRM, more precise calculation results may be obtained by using a narrower calculation region and a 

coarser mesh division. This was confirmed by the numerical calculations discussed herein. 

Unlike FEM, as seen from that constant distribution of the unknown variables is possible, IRM may not assume the 

continuity of the unknown variables between elements from the beginning. It would be safe to say this is a big advantage 

of IRM. In the case of IRM, a higher-order distribution may be introduced easily. By introducing the implicit method in 

time progression, a drastic improvement of the accuracy, stability and computational efficiency could be expected. 
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10. LIST OF SYMBOLS 

 :  density of fluid 

 :  kinematic viscosity of fluid 

1e , 2e  and 3e : base vectors of Cartesian coordinates in the fluid region 

V :  fluid region 

t :  time 

),,(
332211

zyxxxxx
ii

 eeeex : position vector 

),,(
332211

  eeeeξ
ii

: position vector 

),,(),(),(
332211

wvuuuutut
ii

 eeeexxu : velocity vector 

),( tp x : pressure 

ii
x e : nabla operator 

 : source of fluid per unit volume 

ω : vorticity 

B : total pressure 


p : pressure at infinity 

S : body surface 

Bu : fluid velocity on body surface 

n : unit outward normal of the boundary surface 

)(x : velocity potential 

),( ξxG : fundamental solution of Laplace operator 

),,(
332211

  eeeeξ
ii

: position vector 

ii xx  22

xx : Laplace operator 

),( ξx : Dirac’s delta function 

)(x : function befined by Equation (17) 

||),( ξxξx r : radial distance 

S : infinite boundary 

u : uniform flow 

A : defined by Equation (49) 

C : defined by Equation (49) 

dt : differential of time 

 : z  component of vorticity  ω  
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L : used in defining calculation region, for example Ly 0  

N : number of element 

dy : length of element 

iy : midpoint of element i  

ji , jBP : defined by Equation (65) 

BP
y : boundary coordinate 

R : radius of circular cylinder 

),( r , ),(  : cylindrical coordinates 

0
R : radius of virtual infinite-far boundary used in numerical calculation 

),(
ij

r  , ),(
mn

r  : center of element ),( ij , ),( mn  or ji , nm  

M , N : number of elements in circumferential and radial direction 

d , dr : equal element division in circumferential and radial directions defined by equation (84) 

),( jiji yx , ),(
nmnm

yx : center of element defined by equation (86)  

1
M , 

1
N , 

1
d , 

1
dr , 

111 nm
 , 

111 nm
r , 

111 nm
x , 

111 nm
y , … : defined by equation (94) 

p
C , 

f
C : pressure and friction coefficients 

 : frictional stress 

 : coefficient of viscosity 

pD , fD , tD : pressure, friction, total drags 

pDC , fDC , tDC : pressure, friction, total drag coefficient 

p
L , 

f
L , 

t
L : pressure, friction, total lifts 

pL
C , 

fL
C , 

tL
C : pressure, friction, total lift coefficient 

Uu 


: uniform velocity 

 : defined by equation (100) 

RUR
n

2 : Reynolds number 

)(  RdUdtCN  , 
0

drUdtC
rN
 : Courant number in circumferential and radial directions 

j
dr :  dr  of element ji  in case of unequal element division in radial direction 

NTS : number of total time steps 

ptpC _ : 
p

C  obtained by potential theory 

 : proportional constant of stimulus strength added on cylinder surface for certain period of time to induce rapid growth 

of Karman vortex 

WX : length of wake region 

UfRStr 2 : Strouhal number 

f : frequency of Karman vortex 


