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_________________________________________________________________________________ 

ABSTRACT— The motion of rain drop through atmosphere is an interesting classical problem because of the fact that 

air resistance and moisture accretion are integral part of it. Mathematical modeling of it using Newtonian formalism is 

considered here and discussions are made for no mass accretion and air resistance proportional to nth power of velocity. 

We use python program and library extensively to find the terminal velocity of rain drop. Graphs show close agreement 

and velocity power up to n=3 is good. 
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1. INTRODUCTION 

The major component of the water cycle is rain, responsible for depositing most of the fresh water on the earth and the 

major cause of rain production is moisture. Precipitation falls for enough moisture and upward motion of convective clouds 

(those with strong upward vertical motion such as cumulonimbus or thunder clouds) which can organize into narrow rain 

bands [1]. When upslope flow is maximized within windward sides of the terrain, heavy precipitation in mountainous areas 

is possible. On the leeward side of mountains, desert climates can exist due to the dry air caused by down slope flow which 

causes heating and drying of the air mass. Down slope flow causes heating and drying of the air mass on the leeward side 

of mountains and so desert climates can exist due to the dry air. 

2. PHYSICAL PROPERTIES 

Raindrops differ widely in their shapes, sizes and velocities. Smaller raindrops are generally spherical in shape. 

However, as size of the drop increases, it becomes an oblate spheroid. The raindrop is axially symmetric along the line of 

motion and in general non-spherical. The shape will be governed by internal hydrostatic pressure, hydrodynamic pressure 

of medium and surface tension. Beard and Chuang [2] describe the shape of a raindrop as a 10th order cosine distortion of 

a sphere as   r(θ) = R(1 + ∑ cncosnθ)10
i=1     - (1) 

Here R is the radius of the undistorted sphere in meter, cn’s are the coefficients that depend on the radius of the drop 

and θ is the polar angle of elevation. 

Raindrops have a wide size distribution. A commonly used empirical distribution for rain drop size is the Marshall - 

Palmer distribution [3]   N(a) = 8 × 106e−8200Rh−0.21
    - (2) 

Here h is the rain rate given in mm/hr and N(a) is the number of rain drops per unit volume that contains sizes within 

the interval (R, R + dR). Large drops are severely distorted, while smaller drops are almost spherical. Note that the drops 

that make up a significant fraction of rain are less than 1mm in size and are not severely distorted and their shapes can be 

well approximated by a sphere. Therefore, in this paper, we will model rain drops as transparent spheres of water. 

As a raindrop falls, it attains a constant velocity, called the terminal velocity [4]. Gunn and Kinzer [5] present an 

empirical study of the terminal velocities of falling raindrops for different drop sizes. Their observations show that the 

terminal velocity of a raindrop can be expressed as a function of its size and is given by 

     vT = √
4g(2R)(ρw−ρa)

bρa

     - (3) 

Here vT is in (meter/sec) and R is in meters. Here The first order differential equation of rain drop considering 

nth power of velocity for air resistance is solved for the first time by both analytically as well as using the library 
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of python code for no mass accretion which is based on the undergraduate theoretical knowledge. Emphasis is 

given so that undergraduate students can think of novel ideas; increase their skill of understanding; to create new 

method for proper understanding, etc. 

3. THE PROBLEM 

In general this kind of problem can be solved using time integral theorem which states that the time integral of force or 

impulse is equal to the integral of linear momentum. Mathematically we can write it as ∫ dp⃗⃗⃗⃗ = ∫ F⃗ dt. 

Let at time t the mass of a raindrop is m and velocity v⃗  and those at a later time t + dt  are m + dm and v⃗ + dv⃗⃗⃗⃗  

respectively. Thus  F⃗ dt = (m + dm)(v⃗ + dv⃗⃗⃗⃗ ) − mv⃗  

Or,    F⃗ = m
dv⃗⃗⃗⃗  ⃗

dt
+

dm

dt
v⃗        - (4) 

In this case the motion will be governed by the weight of the raindrop mgk̂, buoyant force 
mρag

ρw

k̂, and frictional force 

of the medium, which is proportional to the nth power of velocity bvnk̂ where ρ
a
  and ρ

w
 are the density of the medium 

and raindrop respectively. We assume a = g(1 −
ρa

ρw

) and then 

    m
dv⃗⃗⃗⃗  ⃗

dt
+

dm

dt
v⃗ = amk̂ − bvnk̂     - (5) 

Here b is the resistive force per unit nth power of velocity. Lynch and Lommatsch [6] took the value of resistive constant 

as b = 0.15ρ
a
A where the cross sectional area of raindrop assumes the form A = 3.3108 × (2R)2.21672, with mass of 

raindrop as m = 957.251 × (2R)3.09275 where R is the approximate radius. Generally we put n=1 for resistive force 

proportional to velocity. But there are examples where n>1 and generalized procedure for solution is to be taken in those 

cases. 

4. NO MASS VARIATION CASE 

In this no mass variation case since 
dm

dt
= 0 we get from equation (5) 

dv
am

b
−vn

=
bdt

m
  - (6) 

When n=0 we have v = a −
bt

m
 and for 

dv

dt
= 0 we have any value of the terminal velocity including zero because am =

b and thus clearly am ≥ b. 

For n=1 we have  v =
am

b
(1 − e−

bt

m) and terminal velocity is vT =
am

b
. 

When n=2 the roots of 
am

b
− v2 are ±√

am

b
 and the solution is v = √

am

b

1−e
−t√

4ab
m

1+e
−t√

4ab
m m

abt

m
abt

e

e

b

am
4

4

1

1







 . Thus the terminal 

velocity can be obtained for t → ∞ as vT = √
am

b
. 

When n=3 the roots of 
am

b
− v3 are (

am

b
)
1

3, 
−1±i√3

2
(
am

b
)
1

3. Neglecting negative and imaginary terms as they have no 

physical meaning the solution is v = (
am

b
)
1

3[1 − 𝑒−(
𝑎𝑚

𝑏
)
2
3
3𝑏𝑡

𝑚 ]. The terminal velocity can be obtained for t → ∞  as vT =

(
am

b
)
1

3. 

When n=4 the roots of 
am

b
− v4 are ±(

am

b
)
1

4, ±i(
am

b
)
1

4. Hence v = (
am

b
)
1

4[1 − 𝑒−
𝑏𝑡

𝑚]
1

4. The terminal velocity for t → ∞ as 

vT = (
am

b
)
1

4. 

Using the procedure of rational fraction of integration the first order differential equation for nth power of velocity 

reduces to   ∫ ∑
sldv

rl−v

n
l=1

v

0
= ∫

bdt

m

t

0
e

bt

m = ∏ (
rl

rl−v
)sln

l=1     - (7) 

We can use another general procedure to solve equation (6). For that, we put 𝑥 = 1 −
bvn

am
 and take 𝑝 =

n−1

n
. So 𝑑𝑥 =

−
bnvn−1dv

am
  and thus the equation reduces to 

Amdx

bnxvn−1 = adt 

Or,  −
bndt

m
=

dx

x[
am

b
(1−x)]

n−1
n

=
dx

x
[
am

b
(1 − x)]

−p

= (
am

b
)
−p dx

x
[1 + px +

p(p+1)

2!
x2 +

p(p+1)(p+2)

3!
x3 + ⋯] 
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Or,  −(
am

b
)
p bndt

m
=

dx

x
∑

(p−1+l)!

(p−1)!l!

∞
l=0 xl− (

am

b
)p

bn(t+C)

m
= ∑

(p−1+l)!

(p−1)!l!

xl

l

∞
l=0 = ∑

(l−
1

n
)!

l(−
1

n
)!l!

∞
l=0 (1 −

bvn

am
)l 

This is obtained by integration. Now at t=0 we have v=0 and C=−
m

bn
(

b

am
)
1−n

n ∑
(l−

1

n
)!

l(−
1

n
)!l!

∞
l=0 . Thus 

    −(
am

b
)p bnt

m
= ∑

(l−
1

n
)!

l(−
1

n
)!l!

∞
l=0 (1 −

bvn

am
)l     - (8) 

5. DISCUSSIONS 

Table 1 

Air density a  kg/m3 0.006211* Radius R  m 0.0001– 0.01 

Water density w  kg/m3 957.251* Ab a15.0  4.9110-12 – 6.8410-5 

Acceleration due to gravity 

g  m/s2 
9.81* )1(

w

aga



  

9.8099363 

*ref [6]  

 

For no mass accretion a python code is developed (matplotlib) and integration by odeint is (code is written in 

appendix) performed for different powers of velocity using the values of the parameters given in table 1. The plot 

in logarithmic scale is shown in figure 1 where velocity reaches its terminal velocity almost within ten seconds for 

mass of rain drop 0.5 mg and approximate diameter 1 mm. As discussed in section 4 the velocity for n=0 increases 

with time. 

 
Figure 1 

For further verification terminal velocity in logarithmic scale for n=1,2,3,4,5 is plotted against mass in 

logarithmic scale along with Gunn and Kinzer value [5]. This is shown in figure 2. The plots show close agreement 

and velocity power up to n=3 perhaps a better choice. Here n=0 is not plotted as the terminal velocity is 

undetermined. 

The graphs contain a single intersecting point of approximate terminal velocity 1 m/s and mass 10 -06 mg. This 

perhaps is the choice of minimum raindrop size below which it may be assumed to be a cloud part icle. We note 

that terminal velocity satisfies the equation bvT
n = ma which depends on mass of raindrop and value of b. Here 

again best agreement between analytical and graphical value of vT
n is observed. 

6. CONCLUSIONS 

These graphs clearly speak about the fact that diameter and mass have some impact on terminal velocity. Due to mass 

accretion in moist air the raindrop collects mass and rate may be 
dm

dt
= ρavA where A = πR2 is the projected area of the 

raindrop which is the largest cross section. For spherical drop, increase in radius is proportional to 𝑚
1

3 and an increase in 

area is proportional to 𝑚
2

3. Also mass accretion depends on velocity and so the raindrop size changes with time, i.e. dm/dt 

is proportional to mass m and velocity v. Thus 
dm

dt
= cmαvβ where c>0 is a constant and  and  are (almost) arbitrary 
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exponents [7-9]. This form includes the two most commonly studied cases called the easy case  (, ) = (
2

3
, 0) and the 

hard case (, ) = (
2

3
, 1). The constant c depends on actual shape of raindrop. If the raindrop is spherical then [10] 

    𝑐 =
𝜋𝑅2

(
4

3
𝜋𝑅3𝜌𝑤)𝛼

      - (9) 

 
Figure 2 

This modification seems inadequate because of pressure and temperature variations in the atmosphere. This is not 

considered in any literature so far. 
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9. APPENDIX 

PYTHON CODE 

Program for 1st graph :- 

import numpy as np 

from scipy.integrate import odeint 

import matplotlib.pyplot as plt 

d = 10**(-3) * 1 

c = 0.3 

pw = 1000 
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pa = 1.161 # at 300K, 1 bar     

A = 3.3108*(d**2.21672) 

m = 1000*0.957251*(d**3.09275) 

g = 9.81 

p =  g * (1-(pa/pw)) 

q = 0.5 * c * pa * A 

v0=0 

sol = [v0] 

t= np.linspace(0,400,4000)   

def f(v,t,n,a,b,ca): 

    dvdt = (m*p - q*(v**n))/m - (ca*m**(a-1)*v**(b+1)) #raindrop motion equation 

    return dvdt 

for  n in range(0,6):  

    sol = odeint(f,v0,t,args=(n,0,0,0)) 

    plt.plot (t,sol) 

plt.title('velocity vs time graph with')     

plt.yscale('log') 

plt.xscale('log') 

plt.legend(['$n=0$','$n=1$','$n=2$','$n=3$','$n=4$','$n=5$']) 

plt.xlabel('time in sec') 

plt.ylabel('velocity in m/s') 

plt.show() 

 

Program for 2nd graph For terminal velocity vs mass graph:- 

from scipy.integrate import odeint 

import numpy as np 

import matplotlib.pyplot as plt 

def f(v,t): return a - (b/m)*v**n 

a=9.81*(1- 1.161/1000) 

c = 0.3 

pw = 1000 

pa = 1.161 # at 300K, 1 bar 

g = 9.81 

for n in range(1,6): 

    vt=[] 

    M=[] 

    Gn = [] 

    for d in np.arange(0.002*10**(-3),6*10**(-3),10**(-6)): 

        b=(0.3*1.161*3.3108*d**2.21672)/2.0 

        m=1000*0.957251*d**3.09275 

        t=np.linspace(0,150,300) 

        y0=0 

        sol=odeint(f,y0,t) 

        v=sol[:,0] 

        vt.append(v[-1]) 

        M.append(m) 

    plt.plot(M,vt) 

for d in np.arange(0.002*10**(-3),6*10**(-3),10**(-6)): 

    gn = (((4/3) * 9.81 * d * (pw-pa)) / (pa*c))**(0.5)  

    Gn.append(gn) 

plt.plot(M,Gn, color = 'black', marker = '.' , markerfacecolor = 'black', markersize = 3) 

plt.subplot(111) 

plt.xlabel('mass in SI unit') 

plt.ylabel('terminal velocity in SI unit') 

plt.yscale('log') 

plt.xscale('log') 

plt.title("Terminal velocity - mass plot") 

plt.legend(['$n=1$','$n=2$','$n=3$','$n=4$','$n=5$','$Gunn-Kinzer$']) 

plt.show() 
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