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Abstract--Wind power is clean and renewable source of energy in all countries and circles. Moreover, wind power is
one of the world’s largest and most accessible sources of renewable energy. In this paper, marginal distributions were
fitted to each of the variables and to examine the relationship between wind speed of Elazig, Bitlis and Van with
COPULA method. The results show that there is a weak dependence between wind speed of Elazig, Bitlis and Van.
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1. INTRODOUCTION

The wind is a clean, free, and readily available renewable energy source. Each day, around the world, wind turbines are
taking the wind’s power and transforming it to electricity. This source of power generation moves an increasingly
significant role in the way we power our world.

[1] investigated stochastic dependencies of wind speed for a large data set of German on- and offshore weather stations
and discover that these dependencies not become to be extremely nonlinear but constant over time, usage copula theory,
they describe the value at risk of energy generation for established allocation sets of wind farms and reproduce optimum
allocation plans. They discover that the optimized allocation of wind farms may substantially balance the full wind energy
suppling on daily as well as hourly frequency. [2] submitted European wind power samples which are produced from the
modeled stochastic process, under the prior case of a modeled perfect market environment, wind power effects send out
decisions and for this reason leads to varieties in power equilibriums. Stochastic power equilibriums are applied in a
comprehensive model of the European electricity network, based on the formed samples and lastly, is used to a Monte
Carlo method describe power flows and probabilities in the system.

[3] taken the problem of collecting wind power, submitted here, is to refrain the assumption of extreme values of
correlation, point perfect dependence or perfect independence of the generation and approve secondary values of
correlation, which they debate is of particular interest for small-scale siting analysis, where the ripples of wind power
production influence the capacity value or the size of energy storage. They provide a formulation that is based on the
integration of the joint probability density function (PDF) of the wind power, they prepare this PDF by means of copula
theory in order to deal with the related representation of the marginal PDFs and they define the PDF of wind power and
the associated duration curve.

[4] said the increasing influence of renewable distributed generation in power systems requires the modeling of this
stochastic construction in operation and organizing studies, an integration study of photovoltaic and wind turbines,
spreaded in a distribution network, investigated based on the stochastic modeling using Archimedean copulas as a new
effective instrument.

[5] submitted a review of the potential and utilization of the renewable energy sources in Turkey.

[6] indicated that wind energy source isn't efficiently used in Turkey and how the using of wind energy potential, said some
general report for regarding political construction and the without support mechanism of Turkey, given a comparison
between some advanced countries and Turkey and said that energy planning and management are essential to support wind
energy which has a vital significance for the growth and future of Turkey.

[7] said wind energy utilization in Turkey, sharply increased throughout world and reported Turkey has an abundance of
wind energy sources.

In this study, we evaluated dependence these wind power variables revealed that wind speed of Bitlis, Elazig and Van has
weak dependence. Hence these pairs were used for modelling dependence by employing types of copulas. For the marginal
modelling, the results of probability distributions fitting to these wind power variables indicated that the wind speed of
Bitlis, Elazig and Van time series Lognormal and Gamma distribution.
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2. MATERIAL AND METHOD

2.1. Copula Functions

The copula function is suggested to measure dependence of multivariate variables. Based on the famous Sklar’s theorem
in Sklar (1959), copulas give to put in place the efficient idea of splitting the description of a multivariate model into two
parts: the marginal distributions on one side, the dependence structure (copula) on the other part. Let X and Y be random

variables with continuous distribution functions Fy and Fy , which are uniformly distributed on the interval [0,1]. Then,
there is a copula such that forall x,y e R,

Fyy (X.Y)=C(Fy (X). Ry (¥). @

The copula C for (X,Y) is the joint distribution function for the pair Fy (X) R (Y) provided FX and FY continuous.

aZC(u,v)
ouov
fy 6 Y) =cu,v) £,() £, (y), @

where fX (X) and fy(y) are the marginal densities of the random variables X and Y . According to Sklar (1959) an

The joint probability density of the variables X and Y is obtained from the copula density (u,v) = , as follows:

n-dimensional joint distribution can be dissociated into its n-univariate marginal distributions and an n-dimensional copula.
In the widening of Sklar’s theorem to continuous conditional distributions, it isindicates that the lower (left) and upper
(right) tail dependence of two random variables is given for the copula as:

21 = uIi_r)n0 P(Fc(x)<u| Fy(x) <u)= uIi_r)nOC(u,u)/u 3
A, = L}iL>n1P(F)((x) > U Fy(x) >Uu) = uIiL)nll—Zu —C(u,u)/1-u
(4)

where ll and 4, €[0,1][9-10-11-12-13-14-15-16-17-18-19-20-21].

2.2. Copula Models

Archimedean Copulas

Since they are easily obtained depending on the single variable generator function, these copula families are often used in
practice. Genest and Mackay (1985) one of the interesting properties of Archimedean copulas is that they are easily related
to dependence measures.

o0
Gumbel Copula: Copula is described with the help of generator function ¢(t) =(-Int)” , 6>1,
Cyu,v) :exp(—[(—ln w? & (=n v)'g]w) )
where 6 is the copula parameter restricted to[1, c0).
-0

t
Clayton Copula: Copula is described with the help of generator function ¢(t) = T ,

-0 -0
Cg(u,v)=(u +v =1 (6)
where ¢ is the copula parameter restricted to (0, o0).
e
Frank Copula: Copula is described w with the help of generator function; ¢(l) =—1In —g
e -1
-6u —6v
1 (e —1)(8 —1)
Ce(u,v)z——ln 1+ s @)
0 (e —1)
where @ is the copula parameter restricted to (0,00).
Joe Copula: Copula is described with the help of generator function; ¢(t) =—In[1- (1—t)9]
0 0 0 6,10
Co(uv)=1-[a-u)" +@-v)” - 1-u)’ @-v)"] ®)
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where @ is the copula parameter restricted to [1, ) .
The BB1 Copula (Clayton-Gumbel): Copula is given by

C(u,v) =1- (ul_g + u2_9 - u1—6u2—0)1/9 9)
with 6 e [1, ).
The BB6 Copula (Joe-Gumbel): Copula is

1 1
C(uy,uy.6,8) =1- (- exp{-[(-log-u; "))’ +(~log(t-u, *))’1°})*

(10)
with 0 €[1,0) N6 e[1,x).
The BB7 (Joe-Clayton): Copula is given by
—0 — 11
C(uy,uy.0,8) =1-1-[A-u, ) +@-[A-u, ) -1]7)° (11)
with 9 e[1,0) NS €[0, o).
The BB8 (Frank-Joe): Copula is
1 0 N
C(u;,u,,0,8)==01-[1- 1-(1-4su 1-(1-6u - (12)
(1g,0:0:0) = 5 (-1 - 7 g (- (0=0u) )= A=00) D )
with @ e[1, ) N6 € (0,1].
Elliptical Copulas
Gaussian copula: The copula function can be written as;
2 2
-1 -1 1 20rs—r< —
Cu,v: p) = (& (W) [ 2H(V) > exp( PRz o Jdrds (13)
271 p 2(1-p7)

where u= FYl ¥, v= FYZ (yo) is the inverse of the standard normal distribution and p is the general correlation

coefficient.
Student t copula: Student t copula: The Student’s t-copula allows for joint fat tails and an increased probability of joint
extreme events compared with the Gaussian copula. This copula can be written as;

1 1 2 2 —-(v+2)/2
() (v 1 -2
Cp,v(u,v):j_‘go( )b W) — {1+ ey } dsdlt (14)
2r(1-p") v(l-p7)
where p,v parameters of the t copula.
Survival Copulas
Survival Copula is described
CigoU V) = u+v-1+C(1-u,1-v) (15)

ThenP[X > x Y >y] = ¢C (E(x) G (y)) . The function C is called the survival copula of (X, Y).

3. DATA SET

Wind speed of Bitlis, Elazig and Van data was obtained from Elazig general Directorate of Meteorology daily prices
between 01.01.2012 — 31.12.2017. There are 2192 observations in total. Table 1 summarizes statistics of series. In table 1
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Mean value of the data are different from each other and the corresponding standard deviations are fairly different.
Skewness of the wind speed of Bitlis, Elazig and Van are positive. It is indicated that wind speed of Bitlis, Elazig and Van
are skewed right beside. The high kurtosis of Bitlis wind power series reveals that extreme value changes often occur when
the tail of series distributions shows fatness. The Jarque-Bera (JB) test shows that the normality of each return series

distribution is strongly rejected at 0.05 level, which means all the six index distributions are non-normal.

—— Wind speed of Bilis
——— Wind speed of Elazig
Wind speed of Van

IJ) 1 aull A W . allk !LM “WMWJ ‘

u!
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Figure 1: Wind Speed of Bitlis, Elazig and Van change over years respectively

w2 2013 2014 2015 2016 2017

Table 1: Summary Statistics

Bitlis Elazig Van
Mean 2,963458  2,32570  1,565922
Median 2,600000 2,10000 1,500000

Maksimum 19,80000  9,80000  5,600000
Minumum 0,100000  0,00000  0,100000

Std.Dev 1,585329 1,02679 0,689136
Skewness 2,815257 1,77800 1,722892
Kurtosis 20,22551 499500 8,616717

Jarqure Bera  29375,32 30675,03 3695,779
Probability 0,000000 0,000000 0,00000

4, RESULTS
4.1. Fitting marginal distrubutions to wind speed of Bitlis, Elazig and Van

Before evaluating the dependence, marginal distributions were fitted to each of the variables. For wind speed of Bitlis,
Elaz1g and Van, the most popular distributions were used, namely Logistic, Weibull, Gamma, Lognormal and Exponential.
The probability density distribution and parameter estimates are shown Table 2 and Table 3. In all cases, the estimates
were obtained using the method of maximum likelihood. The best distribution was selected based on Akaike information
criteria and Bayes information Criteria and graphical indicator. From Table 2, wind speed of Bitlis and Elaz1g time series
are best Lognormaldistribution and wind speed of Van time series is best Gamma distribution.
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Figure2: Cumulative and Density distribution function of Logistic, Weibull, Gamma, Lognormal and Exponential Wind
Speed of Bitlis, respectively
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Figure3: Cumulative and Density distribution function of Logistic, Weibull, Gamma, Lognormal and Exponential Wind
Speed of Elaz1g, respectively.
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Figure4: Cumulative and Density distribution function of Logistic, Weibull, Gamma, Lognormal and Exponential Wind

Table 2: Performance evaluation of different probability distributions fitted to wind speed ofBitlis, Elazig and Van

]
\ NJ
AN
Wi

/

Speed of Van, respectively

Logistic Weilbull Gamma Exponential Lognormal

Wind speed of Bitlis

Logl -3760,01 -3762,46 -3571,54 -4464,8 -3527,51

AlIC 7524,02  7528,92  7147,08 8933,6 7059,02

BIC 7526,702 7531,62 7149,71 8936,2 7061,70
Wind speed of Elaz1g

Logl -2537,06 -2564,49 -2394,61 -3389,15 -2350,78

AlC 5078,12 5132,98 4793,22 6782,3 4705,56

BIC 5080,80 5135,66 479590 6784,9 4708,24

Wind speed of Van

Logl -2101,34 -2191,29 -2055,14  -3175,06 -2091,4

AlC 4206,68 438658 4114,28 6354,12 4186,8

BIC 4209,36  4389,26  4116,96 6356,80 41894

Asian Online Journals (www.ajouronline.com)

39


http://www.ajouronline.com/

Asian Journal of Engineering and Technology (ISSN: 2321 — 2462)
Volume 07 — Issue 01, February 2019

Table 3: Parameters of the probability distributions fitted to wind speed of Bitlis, Elaz1g and Van, respectively

Logistic Weilbull Gamma Exponential Lognormal

H o @ B a B Iz H o

Wind speed of Bitlis  2,75705 0,759664  3,35109 1,979 456529 0,649128 2,96346 097285 0475595

Wi”glz';’fgd of 220026 0525501 2,64523 232080 611428 0383028 234104 706983 040585

Wind speed of Van ~ 1,49934 0,385815 1,76498 2,34028 5,68069 0,275657 1,56592 0357882 0439338

4.2. Copulas for modeling dependence

In this study, to model dependence of wind speed of Bitlis, Elazig and Van, we used the most common single parameter
Archimedean families such as the Clayton, Gumbel, Frank and Joe. Furthermore, four Archimedean copula families with
two parameters, namely the Clayton-Gumbel (BB1), the Joe-Gumbel (BB6), The Joe- Clayton (BB7) and the Joe-Frank
(BB8).We also used the corresponding survival copulas. In addition, we used elliptical copulas; Gaussianand Student t.In
figure 5, we give raw data and transformed data, namely we used It is shown that empirical distribution functions in figure
6, 7, 8. We obtaincorrelation coefficients betweenwind speed of Bitlis and Elaz1g; Kendall Tau 7 =0, 201 and Spearman
Rho o =0, 284, correlation coefficients between wind speed of Bitlis and Van; Kendall Tau 7 =0,299 and Spearman
Rho p =0,405and correlation coefficients between wind speed of Van and Elazig; Kendall Tau 7=0,266 and
Spearman Rho o =0,361. Accordingly, it is observed that the relationship of wind speed of Bitlis, Elazig and Van are
weak in the positive direction. But, it is observed that the relationship between wind speed of Bitlis and Vanis more strong
than wind speed of Bitlis and Elaz1g and Elaz1g and Van. From table 4 and table 5, according to the Log | value, AIC and
BIC criteria, it is obtained that as the relationship between wind speed of Bitlis and Elazig are modelling by Survival BB8
copula, the relationship between wind speed of Bitlis and Van is modelling by Tawn type 1 copula and the relationship
between wind speed of Elaz1g and Van are modeling by Rotated Tawn Type 2 180 degrees’copula.In table 4, the calculated
tail dependence values for the pairs wind speed of Bitlis and Elaz1ig when A, =0, A, =0, symmetric tail dependency is
observed in the tail of these pairs. From table 5, for the wind speed of Bitlis and Van pairs, tail dependency coefficients are
A,=0,33 4, =0. From table 6, for the wind speed of Elazig and Van pairs, tail dependency coefficients are 4, =0 A4, =0,
24. According to these values, wind speed of Bitlis and Van pairs pairs have the highest upper tail dependency and wind
speed of Elazig and Van pairs pairs have the lowest upper tail dependency. In figure 9, 10,11 for each copula used, we are
prioritizing for Logl value of each copula and we are shown scatter garph of the relationship between wind speed of Bitlis,
Elazig pairs, Bitlis- Van pairs and Elazig- Van pairs, respectively.
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Figure 5: Raw data and Transformed data figure
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Figure 8: Three and two dimensional Kernel distribution function of wind speed of Elazig and Van respectively
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Table 4: Parameters, Logl, AIC and BIC of different copulas fitted to wind speed of Bitlis and Elaz1g

Family 0 P \% /% ,1| LogL AIC BIC

Gaussian (1) 0,2 0 0 4382 -8563 -79,94

Student t (2) 0,21 12,78 0,01 0,01 49,33 -94,67 -83,28

Clayton (3) 0,25 0 0,06 448 -87,6 -81,91

Gumbel (4) 1,12 0,14 0 30,39 -58,78 -53,08

Frank (5) 1,35 0 0 5223 -102,45 -96,76

Joe (6) 1,12 014 0 1419 -26,39 -20,7

BB1 (7) 02 1,04 0,05 0,04 46,67 -8933 -77,95

BB6 (8) 1 112 0,14 0 30,29 -56,58 -45,2

BB7 (9) 1,03 0,24 0,04 005 4554 -87,08 -75,69

BB8 (10) 6 0,22 0 0 5056 -97,12 -85,73

Survival Clayton (13) (Clayton 180 degrees) 0,18 0,02 0 2325 -4449 -38,8
Survival Gumbel(14) (Gumbel 180 degrees) 1,15 0 017 47,62 -93,23 -87,54
Survival Joe(16) (Joe 180 degrees) 1,2 0 022 3863 -7525 -69,56
Survival BB1(17)(BB1 180 degrees) 0,01 114 0 0,17 4768 -91,35 -79,97
Survival BB6 (18) (BB6 180 degrees) 1 1,15 0 0,17 4759 -91,17 -79,79
Survival BB7 (19) (BB7 180 degrees) 1,16 0,09 0 0,18 43,02 -82,04 -70,66
Survival BB8(20) (BB8 180 degrees) 1,73 08 0 0 59,77 -11553 -104,15
Tawn type 1 (104) 1,19 035 011 0 2531 -46,62 -3523

Rotated Tawn Type 1 180 degrees (114) 1,22 0,35 0 013 3641 -68,82 -57,44
Tawn type 2 (204) 12 035 012 0 2559 -47,17 -3579

Rotated Tawn Type 2 180 degrees (214) 1,25 0,35 0 014 4145 -7891 -67,52
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Figure 9: Logl of different copulas fitted to wind speed of Bitlis and Elaz1g, respectively.
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Table 5: Parameters, Logl, AIC and BIC of different copulas fitted to wind speed of Bitlis and Van

. A /1|
Family 6 P v LogL AlIC BIC

Gaussian (1) 0,4 0 0 186,02 -370,04 -364,35

Student t (2) 041 9,87 0,06 0,06 199,16 -394,33 -382,94

Clayton (3) 0,45 0 0,22 116,98 -231,96 -226,27

Gumbel (4) 1,34 0,32 0 193,02 -384,05 -378,36

Frank (5) 2,69 0 0 191,82 -381,64 -375,95

Joe (6) 1,46 039 0 159,69 -317,38 -311,69

BB1 (7) 008 13 029 0 19559 -387,18 -375,8

BB6 (8) 1 134 032 0 19298 -381,95 -370,57

BB7 (9) 1,36 0,25 0,33 0,06 186,21 -368,42 -357,04

BB8 (10) 244 081 O 0 204,82 -405,64 -394,25

Survival Clayton (13) (Clayton 180 0,56 029 0 173,46 -344,92 -339,23
degrees)

Survival Gumbel (14) (Gumbel 180 1,31 0 0,3 152,1 -302,2 -296,51
degrees)

Survival Joe (16) (Joe 180 degrees) 1,35 0 033 9391 -18582 -180,13

Survival BB1 (17)(BB1 180 degrees) 0,36 1,14 0,18 0,16 192,83 -381,66 -370,27

Survival BB6 (18) (BB6 180 degrees) 1 131 O 0,3 151,97 -299,94 -288,56

Survival BB7 (19) (BB7 180 degrees) 1,15 048 0,23 0,17 187,07 -370,14 -358,75

Survival BB8 (20) (BB8 180 degrees) 6 038 0 0 184,67 -365,35 -353,96

Tawn type 1 (104) 1,87 045 033 0 241,26 -504,52 -493,13

Rotated Tawn Type 1 180 degrees (114) 1,29 048 0 019 88,87 -173,75 -162,36

Tawn type 2 (204) 1,33 048 0,21 0 116,45 -228,89 -217,51

Rotated Tawn Type 2 180 degrees (214) 1,76 043 0 0,31 20565 -407,3 -395,91
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Figure 10: Logl of different copulas fitted to wind speed of Bitlis and Van, respectively.
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Table 6: Parameters, Logl, AIC and BIC of different copulas fitted to wind speed of Elazig and Van

Family ] P \% ,1u )“I LogL AlC BIC
Gaussian (1) 0,31 0 0 108,62 -215,25 -209,56
Student t (2) 0,31 12,18 0,02 0,02 11521 -226,43 -215,04
Clayton (3) 0,42 0 0,2 1084 -2148 -209,11
Gumbel (4) 1,2 022 O 77,317 -152,35 -146,65
Frank (5) 1,98 0 0 -109,15 -216,3 -210,61
Joe (6) 1,21 022 0 4155 -81,11 -7541
BB1 (7) 0,33 1,06 0,08 0,14 11456 -22513 -213,74
BB6 (8) 1 12 022 O 77,05 -150,1 -138,71

BB7 (9) 1,06 039 0,08 017 11269 -221,38 -210
BB8 (10) 6 0,3 0 0 104,42 -204,83 -193,45
Survival Clayton (13) (Clayton 180 degrees) 0,31 0,1 0 63,24 -124,48 -118,79
Survival Gumbel (14) (Gumbel 180 degrees) 1,25 0 0,26 122,13 -242,25 -236,56
Survival Joe (16) (Joe 180 degrees) 1,34 0 0,32 10525 -2085 -202,81
Survival BB1 (17)(BB1 180 degrees) 0,04 1,23 0 024 1229 -241,8 -230,42
Survival BB6 (18) (BB6 180 degrees) 1 1,25 0 026 1221 -240,2 -228,82
Survival BB7 (19) (BB7 180 degrees) 1,28 0,16 0,01 0,28 11848 -232,95 -221,57
Survival BB8 (20) (BB8 180 degrees) 1,84 0,87 0 0 124,63 -245,25 -233,87
Tawn type 1 (104) 1,38 041 021 O 80,6 -157,2  -145,81
Rotated Tawn Type 1 180 degrees (114) 1,29 041 0 017 8112 -158,25 -146,86
Tawn type 2 (204) 1,25 041 015 O 55,73 -107,46 -96,08
Rotated Tawn Type 2 180 degrees (214) 15 041 0 024 13574 -26748 -256,1
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Figure 11: Logl of different copulas fitted to wind speed of Elazig and Van, respectively.
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