Design of Impedance Matching Networks for RF Applications

Frederick Ray I. Gomez

New Product Introduction Department, Back-End Manufacturing & Technology, STMicroelectronics, Inc. 9 Mountain Drive, Light Industry & Science Park II, Brgy. La Mesa, Calamba City, Laguna, Philippines 4027

Email: frederick-ray.gomez [AT] st.com

ABSTRACT— This technical paper presents a design and study of impedance matching for RF (radio frequency) circuit application of common-source amplifier topology. Input and output matching networks of the amplifier were designed and computed ensuring unconditional stability. Inductors and capacitors are key passive components that are crucial for impedance matching, and are specifically designed such that they would satisfy the gain requirements at a specific frequency of operation. Impedance matching is necessary in RF circuit design to provide maximum possible power transfer between the source or the generator and the load. Complex tradeoffs among technology specifications and design parameters exist and should be carefully handled when designing the impedance matching networks, to optimize the performance of the amplifier.

Keywords— Impedance matching, matching networks, RF, common-source amplifier, inductor, capacitor, s-parameters

1. INTRODUCTION

Impedance matching plays vital role in optimizing the performance of the RFIC (radio frequency integrated circuit) design. Matching provides maximum power transfer between the input or source and the output or the load, thus allowing the RF circuit to achieve the desired performance esp. the gain requirements. Inductors and capacitors are key passive components that are crucial for impedance matching, and are specifically designed such that they would satisfy the gain requirements at a specific frequency or range of operation [1] [2] [3]. Design tradeoffs between matching network parameters are inevitable, so it is crucial that inductors and capacitors be designed carefully for the specific requirements of the intended application.

2. DESIGN METHODOLOGY

For this particular study, actual S-parameters of a 300μ m/0.25 μ m transistor (in touchstone format) were initially provided, for RF circuit application of common-source amplifier circuit topology. Required values of S-parameters for a specific frequency of operation could then be determined using linear interpolation. Shown in Table 1 are the S-parameters of the transistor at frequency initially set to 2.6GHz. Moreover, a 10-dB gain requirement is set for this study.

S-Parameters	Real	Imaginary
S11	0.599858625	-0.53991373
S ₂₁	-0.219423779	1.14183461
S_{12}	0.067523223	0.03730980
\mathbf{S}_{22}	0.116580879	-0.40044436

 Table 1: S-parameters of transistor at frequency of 2.6GHz

Stability conditions of the two-port network in terms of S-parameters play an essential role in amplifier designs. Although stability is frequency dependent, we want to ensure that the amplifiers design exhibits unconditional stability esp. at higher frequencies.

There are several ways to check for the stability of the two-port network. Expressions of stability constants in Eq. (1) to (6) could be used to check for the stability of the design. Computed values are shown in Table 2. These can also be used to compute for the source/generator and load reflection coefficients which will be shown later.

$$\Delta = det(S) = S_{11}S_{22} - S_{12}S_{21}$$
 Eq. (1)

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2|S_{12}S_{21}|}$$
 Eq. (2)

$$B_{1} = 1 + |S_{11}|^{2} - |S_{22}|^{2} - |\Delta|^{2}$$
 Eq. (3)

$$B_2 = 1 + |S_{22}|^2 - |S_{11}|^2 - |\Delta|^2$$
 Eq. (4)

$$C_1 = S_{11} - \Delta S_{22}^*$$
 Eq. (5)

$$C_2 = S_{22} - \Delta S_{11}^*$$
 Eq. (6)

Table 2: Stability constant	S
-----------------------------	---

Stability Constants	Values
Δ	0.382530255 ∠-103.4315597°
Κ	1.789571393
B_1	1.331061024
B_2	0.376280183
C_1	0.652080692 ∠-44.9832792°
C_2	0.132947589 ∠-103.4852039°

To have unconditional stability, the Rollett stability factor K must be greater than unity, that is, K > 1, as well as one other condition [1] [2]. Hence, any of the following criteria is sufficient and necessary for unconditional stability:

$K > 1 \text{ and } \Delta < 1$	Eq. (7)
$K > 1 \text{ and } B_1 > 0$	Eq. (8)
$K > 1 \text{ and } B_2 > 0$	Eq. (9)
$K > 1$ and $ S_{12}S_{21} < 1 - S_{11} ^2$	Eq. (10)
$K > 1$ and $ S_{12}S_{21} < 1 - S_{22} ^2$	Eq. (11)

Table 3 shows the condition values of all the unconditional stability criteria.

Table 3:	Unconditional stability criteria	

Criteria	Values	Check Condition
K > 1	1.789571393 > 1	\checkmark
$ \varDelta < 1$	0.382530255 < 1	\checkmark
$B_1 > 0$	1.331061024 > 0	\checkmark
$B_2 > 0$	0.376280183 > 0	\checkmark
$ S_{12}S_{21} < 1 - S_{11} ^2$	0.089698963 < 0.34866279	\checkmark
$ S_{12}S_{21} < 1 - S_{22} ^2$	0.089698963 < 0.82605321	\checkmark

It can be observed that all of the conditions are met. Therefore, the two-port network in terms of S-parameters is unconditionally stable. Maximum power transfer is achieved when both the generator and load are conjugately matched to the two-port network, that is,

$$\Gamma_{in} = \Gamma_G^* \text{ and } \Gamma_{out} = \Gamma_L^*$$
 Eq. (12)

$$Z_{in} = Z_G^* \text{ and } Z_{out} = Z_L^*$$
 Eq. (13)

Where

 Γ_{in} = input reflection coefficient of the two-port network

 Γ_{out} = output reflection coefficient of the two-port network

- Γ_G = source or generator reflection coefficient
- Γ_L = load reflection coefficient
- Z_{in} = input impedance of the two-port network
- Z_{out} = output impedance of the two-port network
- Z_G = source or generator impedance
- Z_L = load impedance

Figure 1 shows the block/schematic diagram of a two port network impedance matching networks.

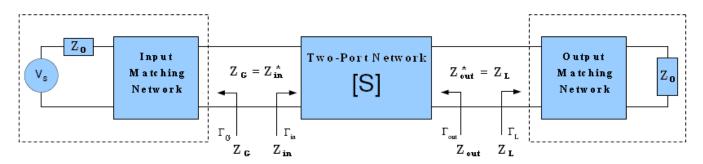


Figure 1: Two-port network with input and output matching networks

Through simultaneous conjugate matching, the following reflection coefficients can be obtained:

$$\Gamma_{in} = \Gamma_G^* = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L} = \frac{S_{11} - \Delta\Gamma_L}{1 - S_{22}\Gamma_L}$$
 Eq. (14)

$$\Gamma_{out} = \Gamma_L^* = S_{22} + \frac{S_{12}S_{21}\Gamma_G}{1 - S_{11}\Gamma_G} = \frac{S_{22} - \Delta\Gamma_G}{1 - S_{11}\Gamma_G}$$
Eq. (15)

Alternatively, the source/generator and load reflection coefficients in Eq. (16) and (17) could be derived using the expressions in Eq. (3) to (6).

$$\Gamma_G = \frac{B_1 - \sqrt{B_1^2 - 4|C_1|^2}}{2C_1}$$
 Eq. (16)

$$\Gamma_L = \frac{B_2 - \sqrt{B_2^2 - 4|C_2|^2}}{2C_2}$$
 Eq. (17)

Using the expressions in Eq. (16) and (17), source/generator and load impedances could now be obtained.

$$Z_G = \left(\frac{1+\Gamma_G}{1-\Gamma_G}\right) Z_0$$
 Eq. (18)

$$Z_L = \left(\frac{1+\Gamma_L}{1-\Gamma_L}\right) Z_0$$
 Eq. (19)

Table 4 shows the values of all the reflection coefficients as well as the impedances, assuming normalization impedance of $Z_0 = 50 \Omega$.

Г and Z	Values
Γ_{in}	0.577503798 - j0.577166827
Γ_{out}	-0.096502369 - j0.402419084
Γ_{G}	0.577503798 + j0.577166827
Γ_L	-0.096502369 + j0.402419084
Z_{in}	32.57933879 - j112.810612 Ω
Z _{out}	30.37350084 - j29.4972738 Ω
Z_G	$32.57933879 + j112.810612 \ \Omega$
Z_L	$30.37350084 + j29.4972738 \ \Omega$

Table 4: Reflection coefficients and impedances

For the input and output matching networks, L-network is used because it is the simplest and most widely used matching network for lumped elements, as shown in Figures 2 to 3.

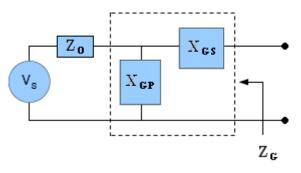


Figure 2: L-network of the input matching network

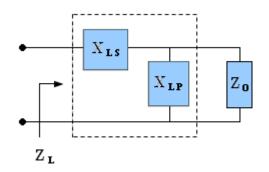


Figure 3: L-network of the output matching network

Where

 X_{GS} = series reactance of the L-network of the input matching network

 X_{GP} = parallel reactance of the L-network of the input matching network

 X_{LS} = series reactance of the L-network of the output matching network

 X_{LP} = parallel reactance of the L-network of the output matching network

The elements of the L-network for both the input and output matching network as shown in Figures 2 to 3 are arranged in such orientation given that the real components of Z_G and Z_L (or R_G and R_L) are smaller than the real component of the normalization impedance which is $Z_0 = 50 \Omega$ (or $R_0 = 50 \Omega$) [1] [2]. To check,

$$R_G = 32.57933879 \,\Omega < R_0 = 50 \,\Omega$$
 Eq. (20)

$$R_L = 30.37350084 \,\Omega < R_0 = 50 \,\Omega$$
 Eq. (21)

For the L-network of the input matching network, the elements can be solved using the following equations given that $Z_0 = 50 \Omega$, $X_0 = 50 \Omega$, $X_0 = 0$):

$$Q_G = \sqrt{\frac{R_0}{R_G} - 1}$$
 Eq. (22)

$$X_{GP} = \pm \frac{R_0}{Q_G}$$
 Eq. (23)

or
$$X_{GP1} = +\frac{R_0}{Q_G}$$
 Eq. (24)

$$X_{GP2} = -\frac{R_0}{Q_G}$$
 Eq. (25)

$$X_{GS} = -\left(-X_G \pm R_G Q_G\right)$$
 Eq. (26)

or
$$X_{GS1} = -(-X_G + R_G Q_G)$$
 Eq. (27)

$$X_{GS2} = -(-X_G - R_G Q_G)$$
 Eq. (28)

Likewise, for the L-network of the output matching network, the elements can be solved using the following equations given that $Z_0 = 50 \Omega$ ($R_0 = 50 \Omega$, $X_0 = 0$):

$$Q_L = \sqrt{\frac{R_0}{R_L} - 1}$$
 Eq. (29)

$$X_{LP} = \pm \frac{R_0}{Q_L}$$
 Eq. (30)

or
$$X_{LP1} = +\frac{R_0}{Q_L}$$
 Eq. (31)

$$X_{LS} = -(-X_L \pm R_L Q_L)$$
 Eq. (33)

or
$$X_{LS1} = -(-X_L + R_L Q_L)$$
 Eq. (34)

$$X_{GS2} = -(-X_L - R_L Q_L)$$
 Eq. (35)

Table 5 summarizes the values obtained from the expressions Eq. (29) to (35).

Table 5: L-network elements

<i>Q</i> and <i>Z</i>	Values
Q_G	0.731242
X_{GP1}	$68.376808\ \Omega$
X _{GP2}	-68.376808 Ω
X_{GS1}	88.987228 Ω
X_{GS2}	136.633996 Ω
Q_L	0.803848
X_{LP1}	$62.200806 \ \Omega$
X_{LP2}	-62.200806 Ω
X_{LS1}	5.081593 Ω
X_{LS2}	53.912955 Ω

Actual capacitor and inductor values at f = 2.6GHz can be computed from the L-network reactances. Positive reactance denotes an inductive component while a negative reactance implies a capacitive component.

$$jX_{GP1} = j\omega L_{GP1}$$
 Eq. (36)

$$L_{GP1} = \frac{X_{GP1}}{\omega} = \frac{68.37680755}{2\pi (2.6GHz)} = 4.185579582nH$$
 Eq. (37)

$$-jX_{GP2} = \frac{1}{j\omega C_{GP2}}$$
 Eq. (38)

$$C_{GP2} = \frac{1}{\omega X_{GP2}} = \frac{1}{2\pi (2.6GHz)(68.37680755)} = 0.895236877 \, pF$$
 Eq. (39)

$$jX_{GS1} = j\omega L_{GS1}$$
 Eq. (40)

$$L_{GS1} = \frac{X_{GS1}}{\omega} = \frac{88.98722805}{2\pi (2.6GHz)} = 5.447214314nH$$
 Eq. (41)

$$jX_{GS2} = j\omega L_{GS2}$$
 Eq. (42)

$$L_{GS2} = \frac{X_{GS2}}{\omega} = \frac{136.633996}{2\pi (2.6GHz)} = 8.363836868nH$$
 Eq. (43)

$$jX_{LP1} = j\omega L_{LP1}$$
 Eq. (44)

$$L_{LP1} = \frac{X_{LP1}}{\omega} = \frac{62.20080573}{2\pi (2.6GHz)} = 3.807525268nH$$
 Eq. (45)

$$-jX_{LP2} = \frac{1}{j\omega C_{LP2}}$$
 Eq. (46)

$$C_{LP2} = \frac{1}{\omega X_{LP2}} = \frac{1}{2\pi (2.6GHz)(62.20080573)} = 0.9841261529 \, pF$$
 Eq. (47)

$$jX_{LS1} = j\omega L_{LS1}$$
 Eq. (48)

$$L_{LS1} = \frac{X_{LS1}}{\omega} = \frac{5.081592616}{2\pi (2.6GHz)} = 0.3110617629nH$$
 Eq. (49)

$$jX_{LS2} = j\omega L_{LS2}$$
 Eq. (50)

$$L_{LS2} = \frac{X_{LS2}}{\omega} = \frac{53.91295498}{2\pi (2.6GHz)} = 3.300197416nH$$
 Eq. (51)

Two sets of values will be used in the simulation to check if the whole circuit is really matched at the frequency of operation which is 2.6GHz. Design1 is comprised of L_{GS1} and L_{GP1} for the input matching network and L_{LS1} and L_{LP1} for the output matching network. On the other hand, Design2 is composed of L_{GS2} and C_{GP2} for the input matching network and L_{LS2} and C_{LP2} for the output matching network. The actual values of inductors and capacitors are listed in Table 6. Note that the gain requirement for the amplifier design is set at 10dB, and hopefully the computed L and C for impedance matching networks could help achieve the target.

Table 6: Actual L-network elements

L and C	Values
L_{GP1}	4.186 nH
C_{GP2}	0.895 pF
L_{GS1}	5.447 nH
L_{GS2}	8.364 nH
L_{LP1}	3.808 nH
C_{LP2}	0.984 pF
LLS1	0.311 nH
L_{LS2}	3.300 nH

3. SIMULATION RESULTS AND ANALYSIS

Two designs were simulated using the two sets of values of the input and output matching networks, with values previously summarized in Table 6. The actual values are shown in Table 6. Figures 4 and 5 shows the complete schematic circuit designs of Design1 and Design2.

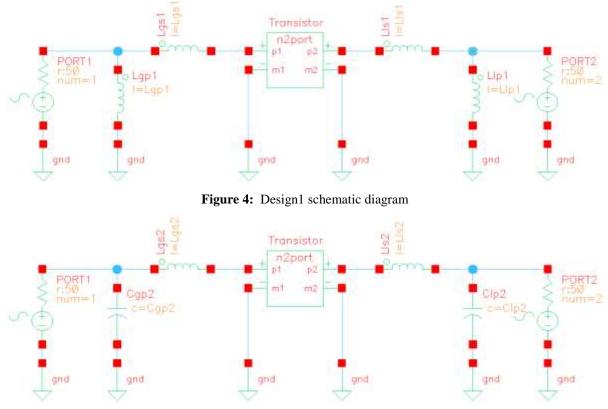
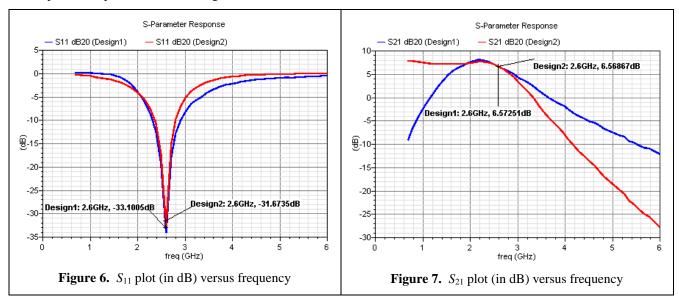
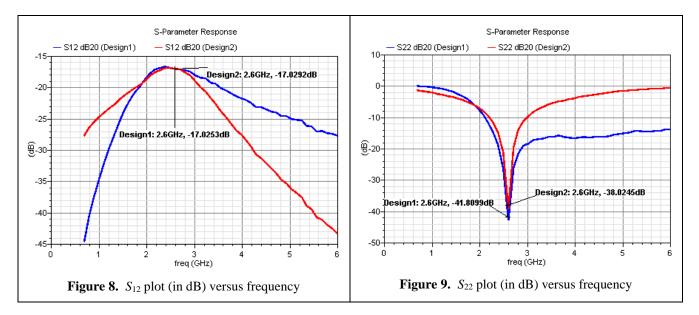


Figure 5: Design2 schematic diagram

The *n2port* from the *analogLib* library is used for the two-port network. Although *spectre*-format file is preferred for the S-parameter file input of the *n2port* component, *touchstone*-format can still be used. In this study, the *touchstone*-format S-parameter file is used since the actual S-parameters are given in *touchstone* format. Still, *touchstone*-formatted file can be converted to *spectre*-format using the command *sptr*. Figures 6 to 9 shows the comparison of the results of the S-parameter plots of the two designs.



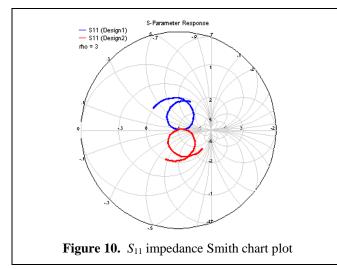


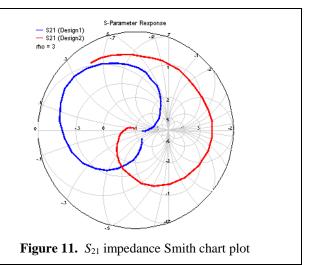
S-parameter plots were obtained using the sp analysis. It can be shown in Figure 6 that the two designs are somehow matched at frequency of 2.6GHz. The values of the S-parameters for the two designs at 2.6GHz are comparable and relatively close to each other. But it can be observed that the S-parameter plots of Design2 are smoother than the plots of Design1 at frequencies greater than 2.6GHz. The difference is evident esp. in the S₂₂ plot in Figure 9. This signifies that Design2, which is comprised of inductor-capacitor combination in the L-matching networks, exhibits a more stable behavior for higher frequencies than the Design1 which is an all-inductor design. Moreover, the S₁₁ and S₂₂ plots of Design2 are more symmetric in reference to the frequency of operation which is 2.6GHz compared to the Design1. A summary of S-parameters values are shown in Table 7.

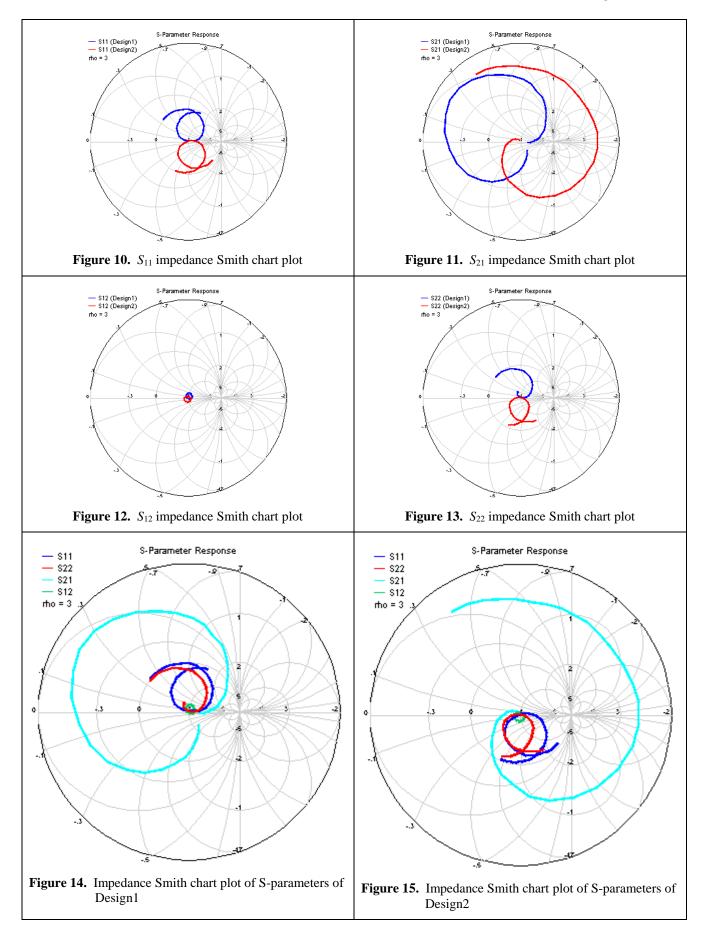
Table 7: S-parameters response at 2.6GHz

S-Parameters	Design1	Design2
S_{11}	-33.101 dB	-31.674 dB
S_{21}	6.573 dB	6.569 dB
S_{12}	-17.025 dB	-17.029 dB
S22	-41.810 dB	-38.025 dB

The gain of the transistor or the amplifier is shown in the S_{21} plot in Figure 7. At frequency of 2.6GHz, the gain is only 6.573dB for the Design1 and 6.569dB for the Design2. It is almost 3.5dB less than the 10dB gain target. This is because as the frequency increases in the higher frequencies esp. beyond the frequency of operation, the gain decreases. If the gain-bandwidth product is to be remained constant, then as the bandwidth or the frequency increases, the gain should compensate, thus decreasing the gain. Figures 10 to 15 shows the S-parameter plots in Smith charts.







Since Design1 is an all-inductor design, the responses of S-parameters in the impedance Smith chart are more on the inductive half of the Smith chart, evident in Figures 10 to 14. On the other hand, Design2 has a capacitor on the matching networks, thus the impedance Smith chart responses of the S-parameters are more on the capacitive half of the Smith chart as evident in the charts shown in Figures 10-13, 15.

4. CONCLUSIONS AND RECOMMENDATIONS

Impedance matching is necessary in RF circuit design to provide maximum possible power transfer between the source or generator and the output load. In this study, two designs were modeled and investigated. The design (Design2) which comprised of an inductor-capacitor combination in the input and output matching networks resulted to a smoother response or a more stable behavior for higher frequencies than the design (Design1) with all inductors in the matching networks. All designs achieved gain of 3dB versus the target of 10dB. One factor is the limitation of the initially provided actual S-parameters of the transistor in *touchstone* format, which were used for the transistor model using *n2port* two-port network component. Regardless, complex tradeoffs among technology specifications and design parameters exist and should be carefully handled when designing the impedance matching networks, to optimize the performance of the RF circuit.

Design and study of particular passive components could be helpful in understanding and finally designing the matching networks. Software tools like ASITIC (analysis and simulation of spiral inductors and transformers for ICs) [4] [5] and SpiralCalc (integrated spiral inductor calculator) [6] [7] [8] [9], which are available for non-commercial purposes, could be used for this particular study.

5. ACKNOWLEDGMENT

The author would like to express great appreciation to Prof. Maria Theresa De Leon, Ph.D. of Microelectronics and Microprocessors Laboratory at the University of the Philippines for the technical support during the course of the study, and to the STMicroelectronics Calamba NPI Team and the Management Team for the utmost support.

6. REFERENCES

- [1] C. Bowick, RF Circuit Design, 1st ed., Howard W. Sams & Co. Inc., Indianapolis, Indiana, USA, 1982.
- [2] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall Press, Upper Saddle River, New Jersey, USA, 2011.
- [3] P.R. Gray and R.G. Meyer, "Future directions in silicon ICs for RF personal communications," in Proc. IEEE Custom Integrated Circuits Conference, Santa Clara, CA, USA, pp. 83-89, May 1995.
- [4] A.M. Niknejad and R.G. Meyer, "ASITIC for Windows NT/2000," Research in RFIC Design, http://rfic.eecs. berkeley.edu/~niknejad/Asitic/grackle/cygwin_info.html.
- [5] A.M. Niknejad and R.G. Meyer, "Analysis and optimization of monolithic inductors and transformers for RF ICs," in Proc. IEEE Custom Integrated Circuits Conference, Santa Clara, CA, USA, pp. 375-378, May 1997.
- [6] Stanford Microwave Integrated Circuits Laboratory, Integrated Spiral Inductor Calculator, http://www-smirc.standford.edu/spiralCalc.html.
- [7] S.S. Mohan, M. Hershenson, S.P. Boyd and T.H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE Journal of Solid-State Circuits, vol. 34, issue 10, pp. 1419-1424, October 1999.
- [8] H.A. Wheeler, "Simple inductance formulas for radio coils," in Proc. Institute of Radio Engineers, vol. 16, issue 10, pp. 1398-1400, October 1928.
- [9] M. Hershenson, S.S. Mohan, S.P. Boyd and T.H. Lee, "Optimization of inductor circuits via geometric programming," in Proc. Design Automation Conference, New Orleans, LA, USA, pp. 994-998, June 1999.