A Review of Microcolorimetry for Textile, Food, Dental and Optoelectronic Industries
Keywords:
Microscopy, Fiber optics, Weighted-ordinate colorimetry, Interference colors, IridescenceAbstract
A microscope spectrophotometer may be used for colorimetry with transmitted, reflected or emitted light. Optical fibers may be used to link the microscope to remote samples, which may be commercial color standards like Pantone or paint manufacturers’ color chips, or small museum specimens. The weighted-ordinate method of colorimetry gives useful results for a wide variety of samples, although light scattering in small samples like textile fibers has some important effects that may be missed in macroscopic colorimetry. The weighted-ordinate method is applicable to metallic and pastel interference colors, with printed simulations and real interference colors giving similar results. Thus, spectrophotometry is still required to identify fake security holograms.  Some classic work was confirmed, showing how immersion under water may be used to identify a source of iridescence. Multilayer interference in molluscan shell nacre had multiple spectral peaks easily detectable under water, whereas diffractive interference on a peacock feather had a single spectral peak lost under water. Iridescence in single muscle fibers from roast meat resembled multilayer interference in having multiple spectral peaks that were easily visible under water, and the importance of optical anisotropy in food colorimetry was considered. Boolean analysis of fiber-optic spectra may be used instead of the weighted-ordinate method for spectra obtained robotically in a contextual learning mode. From investigating museum samples to quality control using optoelectronic components, microcolorimetry may have a promising future.Â
References
Billmeyer , F.W. , Saltzman, M. (1981). Principles of Color Technology. John Wiley & Sons, New York. 240 pp.
Hooke, R. (1665). Micrographia or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries thereupon. Royal Society, London. Facsimile reproduction, 1961, Dover Publications, New York, p. 168.
Swatland, H.J. (1998). Computer Operation for Microscope Photometry. CRC Press, Boca Raton, FL. 238 pp.
Weidner, V.R., Hsia, J.J. (1981). Reflectance properties of pressed polytetrafluoroethylene powder. J. Optic. Soc. Amer. 71: 856-861. http://hep.ucsb.edu/people/hnn/n/nbspfte.pdf
Swatland, H.J. (1991). Effect of refractive index and cutting angle on internal Fresnel reflectance at the distal window of an optical fiber. J. Comput. Assist. Microsc. 3:233-236.
Greaves, P.H. , Saville, B.P.(1995). Microscopy of Textile Fibres. Royal Microscopical Society, Microscopy Handbooks 32. Bios Scientific Publishers, Oxford. 92 pp.
Ferreira, E.S.B., Hulme, A.N., McNab, H., Quye, A. (2004). The natural constituents of historical textile dyes. Chem. Soc. Rev. 33: 329-336. http://pubs.rsc.org/en/content/articlelanding/2004/cs/b305697j#!divAbstract
Antúnez de Mayolo, K.K. (1989). Peruvian natural dye plants. Econ. Bot. 43: 181-191. https://link.springer.com/article/10.1007/BF02859858
Fischer, C.H., Rabe, J.G., Bischof, M. (1990). Identification of natural and early synthetic textile dyes with HPLC and UV/vis-spectroscopy by diode array detection. J. Liq. Chromatogr. 13: 319-331. http://www.tandfonline.com/doi/abs/10.1080/01483919008049546?needAccess=true&journalCode=ljlc19
Dapson, R. W. (2007). The history, chemistry and modes of action of carmine and related dyes. Biotech. Histochem. 82: 173-187. http://www.tandfonline.com/doi/abs/10.1080/10520290701704188?src=recsys&journalCode=ibih20
Saltzman M. (1992). Identifying dyes in textiles. Amer. Sci. 80: 474-481. http://www.jstor.org/stable/29774728
Gordon, L.M., Cohen, M.J., MacRenaris, K.W., Joester, D. (2015). Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347(6223):746-750. http://science.sciencemag.org/content/347/6223/746
Berthier S. (2007). Iridescences. The Physical Colors of Insects. Springer Science + Business Media: New York; 2007. 160 pp.
Lee, D. (2007). Nature’s Palette. The Science of Plant Color. University of Chicago Press, Chicago. 409 pp.
Hurlbut, C. (1971). Dana’s Manual of Mineralogy. John Wiley & Sons, New York. 579 pp.
Delly, J.G. (2003). The Michel-Lévy interference color chart – microscopy’s magical color key. Modern Microsc. J., July 10. http://www.timeanddate.com/worldclock/city.html?n=1178
Judd, D.B. (1952). Color in Business Science and Industry. John Wiley and Sons: New York. 401 pp.
Kukowski, A.C., Wulf, D.M., Shanks, B.C., Page, J.K., Maddock, R.J. (2004). Factors associated with surface iridescence in fresh beef. Meat Sci. 66: 889-893. http://www.sciencedirect.com/science/article/pii/S0309174003002328
Lawrence, T.E., Hunt, M.C., Kropf, D.H. (2002). Surface roughening of precooked, cured beef round muscles reduced iridescence. J. Muscle Foods 13, 68-73. http://onlinelibrary.wiley.com/doi/10.1111/j.1745-4573.2002.tb00321.x/abstract
Martinez-Hurtado, J.L., Akram, M.H., Yetisen, A.K. (2013). Iridescence in meat caused by surface gratings. Foods 2: 499-506. http://www.oalib.com/paper/3095935#.Wd7AyvkrLDc
Rayleigh, Lord. (1923). Studies of iridescent colour and the structure producing it. III. The colours of Labrador feldspar. Proc. Roy. Soc., London. Series A, 103: 34-45. http://rspa.royalsocietypublishing.org/content/103/720/34
Raman, C.V., Jayaraman, A. (1950). The structure of labradorite and the origin of its iridescence. Proc. Indian Acad. Sci. A32: 1-16. https://link.springer.com/article/10.1007/BF03172469?no-access=true
Bendall, J.R. (1973). Postmortem changes in muscle. In: The Structure and Function of Muscle. G.H. Bourne (ed.). Vol. 2, Part 2. 2nd edition. Academic Press, New York.
Pierobon-Bormioli, S. (1981). Transverse sarcomere filamentous systems: ‘Z- and M-cables’. J. Muscle Res. Cell Motil. 2: 401-413. https://link.springer.com/article/10.1007/BF00711967?no-access=true
Wang, K., Ramirez-Mitchell, R. (1983). A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J. Cell Biol. 96: 562-570. https://www.ncbi.nlm.nih.gov/pubmed/6682107
Aronson, J.F. (1966). A melting point for the birefringent component of muscle. J. Cell Biol. 30: 453-464. https://www.ncbi.nlm.nih.gov/pubmed/5339378
Swatland, H.J. (1988). Measurement of light scattering in normal pork using a fiber-optic goniophotometer. J. Anim. Sci. 66: 2578-2582. https://www.animalsciencepublications.org/publications/jas/abstracts/66/10/JAN0660102578
Swatland, H.J. (2003). Fiber-optic spectrophotometry of beef relative to sarcomere length. Archiv. Anim. Breeding 46: 31-34. http://www.archanimbreed.com/pdf/2003/at03p031.pdf
Swatland, H.J., Ananthanarayanan, S.P., Goldenberg, A.A. (1994). A review of probes and robots. Implementing new technologies in meat evaluation. J. Anim. Sci. 72: 1475-1486. https://www.animalsciencepublications.org/publications/jas/abstracts/72/6/1475
Swatland, H.J. (1995). Microscope spectrofluorometry of bovine connective tissue using a photodiode array. J. Comput. Assist. Microsc. 7: 165-170.
Lockyer, , J.N. (1883). Studies in Spectrum Analysis. Kegan Paul, Trench & Co. London., 258 pp.
Rood, O.N. (1883). Modern Chromatics with Applications to Art and Industry.2nd edition. Kegan Paul, Trench & Co., London. 330 pp.
Downloads
Published
How to Cite
Issue
Section
License
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.