Critical View of Ultrasonic Removal Applied to Industrial Effluents


  • Fernando B. Mainier Escola de Engenharia, Universidade Federal Fluminense
  • Antonio Carlos M. Rocha
  • Carlos Henrique F. Alves
  • Renata J. Mainier


Ultrasonic, effluents, clean technologies, laboratory tests


The work aims to bring together, across disciplines, some knowledge in the development of new clean technologies for the disposal of industrial contaminants, which are difficult to remove by conventional methods, using an ultrasound cavitation bubbles generator. The main aim of this study is to show that the efficiency of the application of sonic waves depends on the types of equipment used. Laboratory tests have shown that phenols and organochlorines compounds can be destroyed by ultrasonic technique aiming at its implementation of these compounds in industrial effluents.


Mainier, R. J., Mainier, F. B. and Cardoso, V. L. S., “Clean technology and industrial safe: a right of societyâ€, International Journal Multidisciplinary Sciences and Engineering, vol. 4, no. 5 June, pp. 1-6, 2013.

Mierzwa J. C. and Aquino, S. F., “Contaminantes orgânicos presentes em microquantidades em mananciais de água para abastecimento públicoâ€, Projeto PROSAB, Rio de Janeiro, ABES, 2009.

Tavares, F. V., Monteiro, L. P. C. and Mainier, F. B., “Indicators of energy efficiency in ammonia productions plants, American Journal of Engineering Research, Volume 02, Issue-07, pp. 116-123, 2013.

Adewuyi, Y. C., “Sonochemistry: environmental science and engineering applicationsâ€, Industrial Engineering Chemistry Research, 40, pp. 4681-4715, 2001.

Cravotto, G., Di Carlo, S., Tumiatti, V., Roggero, C. and Bremner, H. D., “Degradation of persistent organic pollutants by Fenton's reagent facilitated by microwave or high-intensity ultrasoundâ€. Environmental technology, 26(7), 721-724, 2005.

Entezari, M. H. and Petrier, C., “A combination of ultrasound and oxidative enzyme: sono-biodegradation of phenolâ€. Applied Catalysis B: Environmental, 53(4), 257-263, 2004.

Mason, T. J. "Sonochemistry and the environment–Providing a “green†link between chemistry, physics and engineering." Ultrasonic sonochemistry 14, 4, pp. 476-483, 2007.

Thompson, L; H. and L. K. Doraiswam, “Sonochemistry: science and engineeringâ€, Industrial Engineering Chemistry Research. 38, pp. 1215-1249, 1999.

Mason, T. J. and Lorimer, J. P., “Applied sonochemistry: the uses of power ultrasound in chemistry and processingâ€, Wiley-VCH, 2002.

Lickiss, P; D. “Ultra-som em síntese química, In: Neoquímica: a química moderna e suas aplicaçõesâ€, Organizado por Nina Hall, Porto Alegre, Bookman, 2004.

Gong, F. and Hart, D. F., “Ultrasound induced cavitation and sonochemical yieldsâ€, Journal of the Acoustical Society of America, Vol. 104, pp. 1-6, 1998.

Garbellini, G. S., Salazar-Banda, G. R. and Avaca, L. V., “Aplicação do ultra-som em sistemas eletroquímicos: considerações teóricas e experimentaisâ€, Química. Nova, Vol. 31, no. 1, pp. 123-133, 2008.

K. P. Mishra, K. P. and Gogate, P. R., “Intensification of sonophotocatalytic degradation of p-nitrophenol at pilot scale capacityâ€, Ultrasonic Sonochemistry, 18, pp. 739-744, 2011.

Chiba, M., Meroniani, S., Haumdaoui, O., Baup, S., Gondrexon, N. and Pétrier, C., “Modelling of ultrasonic degradation of non-volatile compounds by Langmuir-type kineticsâ€, Ultrasonic Sonochemistry, Elsevier, v. 17, no. 5, pp. 773-7822, 2010.

Mahamuni, N. N. and Pandit, A. B., “Effect of additives on ultrasonic degradation of phenolâ€, Ultrasonic Sonochemistry, v 13, pp. 165-174, 2010.




How to Cite

Mainier, F. B., Rocha, A. C. M., Alves, C. H. F., & Mainier, R. J. (2013). Critical View of Ultrasonic Removal Applied to Industrial Effluents. Asian Journal of Engineering and Technology, 1(4). Retrieved from