Thermal Plasma Treatment of Municipal Solid Waste Incineration Residue: A Review


  • M. A. Abu Hassan
  • A. M. Ali


Thermal plasma, Bottom ash, Fly ash, Incineration, Municipal solid waste


Incineration is the most common thermal method applied to treat generated municipal solid waste due to its ability to achieve volume and mass reduction of waste and energy recovery but this success comes along with the release and formation of bottom ash, fly ash and air pollution control residue that require proper treatment and management. This paper review the applicability of thermal plasma process in treating municipal solid waste residues (MSWI). Bottom ash, fly ash and mixture of bottom ash and fly ash has been subjected to thermal plasma treatment to study the slag reuse potential, volatilization and mobility of trace element, immobilisation of heavy metals and destruction of Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The predominant components in the residues are zinc and lead as well as oxides of aluminium, calcium and silicon (Al2O3, CaO and SiO2).The need for environmentally acceptable and friendly treatment of waste and the benefit of  high energy density, higher weight and volume reduction, elimination of landfill requirement and production of  non-hazardous and reusable material from thermal plasma systems will continue to promotes its suitability for treatment of municipal solid waste incineration residue.


Chen, X.D., Y. Geng, and T. Fujita, An overview of municipal solid waste management in China. Waste Manage, 2010. 30(4): p. 716-724.

Li, Z., L. Yang, and X.Y. Qu, Municipal solid waste Management in Beijing City. Waste Manage 2009. 29(9): p. 2596-2599.

Dong, S.C. and W.T. Kurt, Municipal solid waste management in China: using commercial management to solve a growing problem. Util Policy 2001. 10(1): p. 7-11.

Farrell, M. and D.L. Jones, Critical evaluation of municipal solid waste composting and potential compost markets. Bioresour Technol, 2009. 100: p. 4301-4310.

Daniel, H. and B. Perinaz, What A Waste: A Global Review of Solid Waste Management, W. Bank., Editor. 2012.

UN, Solid waste management in the world cities, U.N.H.S. Programme, Editor. 2010, Earthscan: UK.

Lee, V.K.C., et al., Operation of a municipal solid waste co-combustion pilot plant. Asia-Pac. J. Chem. Eng, 2007. 2: p. 631-639.

Jing, Z., et al., Municipal incineration bottom ash treatment using hydrothermal solidification. Waste Manag, 2007. 27: p. 287-293.

Millrath, K., F.J. Roethel, and D.M. Kargbo, Waste-To-Energy Residues-The Search for Beneficial Uses, in 12th North American Waste To Energy Conference (NAWTEC 12). 2004: Savannah GA. p. 1-812.

Chandler, A.J., et al., Municipal Solid Waste Incinerator Residues. IAWG (International Ash Working Group),Studies in Environmental Sciences. Vol. 67. 1997, Amsterdam: Elsevier Sci.

Gordon, M., Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chemical engineering journal, 2002. 86: p. 343-368.

WorldBank, municipal solid waste incineration.World bank Technical Guidance Report. 1999.

Margallo, M., R. Aldaco, and A. Irabien, Environmental management of bottom ash from municipal solid waste incineration based on a life cycle assessment approach. . Clean Techn Environ Policy 2014. 16(17): p. 1319-1328.

Sabbasa, T., et al., Management of municipal solid waste incineration residues. Waste Management 2003. 23: p. 61-68.

Yang, Y., et al., Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator. Journal of Hazardous Materials, 2007. 154(1-3): p. 1-3.

Zhao, L.J., et al., Chemical properties of heavy metals in typical hospital waste incinerator ashes in China. Waste Management, 2008. 29(3): p. 1114-1121.

Sukandar, S., et al., Metals leachability from medical waste incinerator fly ash : A case study on particle size comparison. Environmental Pollution, 2006. 144(3): p. 726-736.

Martha, C., et al., Characterization of fly ash from a hazardous waste incinerator in Medellin,Colombia. Journal of Hazardous Materials, 2009. 168(2-3): p. 1223-1232.

Zhao, L.J., et al., Typical pollutants in bottom ashes from a typical medical waste incinerator. Journal of Hazardous Materials, 2010. 173(1-3): p. 181-185.

Wiles, C. and P. Shepherd, Beneficial Use and Recycling of Municipal Waste Combustion Residues-A Comprehensive Resource Document. National Renewable Energy Laboratory (NREL): Boulder, CO, 1999.

Chang, F.Y. and M.Y. Wey, Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. Journal of hazardous materials, 2006. 138(3): p. 594-603.

He, P., et al., Characteristics of air pollution control residues of MSW incineration plant in Shanghai. Journal of Hazardous Materials, 2004. 116(3): p. 229-237.

Romero, M., et al., Use of vitrified urban incinerator waste as raw material for production of sintered glass-ceramics. Mater. Res., 2001. 36: p. 383-395.

Cheng, T.W. and Y.S. Chen, Characterisation of glass ceramics made from incinerator fly ash. Ceram. Int., 2004. 30: p. 343-349.

Pan, J.R., et al., Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Manage, 2008. 28: p. 1113-1118.

Andreola, F., et al., Reuse of incinerator bottom and fly ashes to obtain glassy materials. J. Hazard. Mater, 2008. 153: p. 1270-1274.

Haiying, Z., Z. Youcai, and Q. Jingyu, Study on use of MSWI fly ash in ceramic tile. J. Hazard. Mater., 2007. 141: p. 106-114.

Gines, O., et al., Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. J. Hazard. Mater, 2009. 169: p. 643-650.

Yang, J., B. Xiao, and A.R. Boccaccini, Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash. Fuel 2009. 88: p. 1275-1280.

Bogaerts, A., et al., Gas discharge plasmas and their applications. Spectrochimica Acta Part B-Atomic Spectroscopy, 2002. 57: p. 609-658.

Polettini, A., R. Pomi, and P. Sirini. Vitrification and Sintering for MSWI Fly Ash Inertization as Alternatives to Conventional Stabilization Treatments. in Fifteenth International Conference on Solid Waste Technology and Management. 1999. Widener University’s School of Engineering:Philadelphia, PA, USA.

Xiao, Y., R.G. Harskamp, and Y.Y. I. Pre-Washing and Vitrification of Fly Ash from a Municipal Solid Waste Incinerator. in Global Symposium on Recycling, Waste Treatment and Clean Technology (REWAS 2008). 2008. Cancun, Mexico.

Shibuya, E., et al., Vitrification for fly ash using electric-resistance furnace. NKK Tech. Rev 2000. 82: p. 1-7.

Xiao, Y., et al., Vitrification of bottom ash from a municipal solid waste incinerator. Waste Manag, 2008. 28: p. 1020-1026.

Čarnogurská, M., et al., Measurement and evaluation of properties of MSW fly ash treated by plasma. Measurement, 2015. 62: p. 155-161.

Lázár, M., et al., High-temperature gasification of RDF waste and melting of fly ash obtained from the incineration of municipal waste. Acta Polytechnica, 2015. 55(1): p. 1-6.

Pan, X., Y. Jianhua, and X. Zhengmiao, Detoxifying PCDD/Fs and heavy metals in fly ash from medical waste incinerators with a DC double arc plasma torch. Journal of Environmental Sciences, 2013. 25(7): p. 1362–1367.

Pan, X. and Z. Xie, Characteristics of Melting Incinerator Ashes Using a Direct Current Plasma Torch. Environmental and analytical toxicoogy, 2014. 4(3).

Tu, X., et al., Electrical and spectroscopic diagnostic of an atmospheric double arc argon plasma jet. Plasma Sources Sci. T., 2007. 16: p. 803-812.

Tu, X., et al., Fluctuations of DC atmospheric double arc argon plasma jet. Vacuum, 2008. 82(5): p. 468-475.

Lin, W.Y., et al., The Emission and Distribution of PCDD/Fs in Municipal Solid Waste Incinerators and Coal-fired Power Plant. Aerosol Air Qual. Res, 2010. 10: p. 519-532.

Wang, L.C., et al., Distribution of Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated Dibenzop- dioxins and Dibenzofurans (PBDD/Fs) in Municipal Solid Waste Incinerators. Environ. Pollut., 2010. 158: p. 1595-1602.

Chiu, J.C., et al., Emissions of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans from an Electric Arc Furnace, Secondary Aluminum Smelter, Crematory and Joss Paper Incinerators. Aerosol Air Qual. Res., 2011. 11: p. 13-20.

Yi-Ming, K., H. Kuo-Lin, and L. Chitsan, Metal Behavior during Vitrification of Municipal Solid Waste Incinerator Fly Ash. Aerosol and Air Quality Research, 2012. 12: p. 1379-1385.

Ball, R.G.J., T.I. Barry, and J.A. Gisby, Phase Diagrams for CaO-SiO2. National Institute of Standard and Institute, 1993.

Klein, C., ed. The Manual of Mineral Science. 22 ed. 2008, John Wiley & Son, Inc: New York. 491-493.

Ioanna, K., et al., Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. Journal of Hazardous Materials, 2010. 176: p. 704-709.

Peng, Z., et al., Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. Journal of Hazardous Materials 2010. 181: p. 580-585.

Cheng, T.W., et al., Treatment and recycling of incinerated ash using thermal plasma technology. Waste Manage, 2002. 22 p. 485-490.

Kim, H.I. and D.W. Park, Characteristics of fly ash/sludge slags vitrified by thermal plasma. Ind. Eng. Chem, 2004. 10(2): p. 234-238.

Wan, X., et al., A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure. J. Hazard. Mater. , 2006. B134: p. 197-201.

Park, K., et al., Vitrification of municipal solid waste incinerator fly ash using Brown’s gas. Energ. Fuel, 2005. 19(1): p. 258-262.

Ecke, H., et al., Effect of electric arc vitrification of bottom ash on the mobility and fate on metals. Environ. Sci. Technol, 2001. 35: p. 1531-1536.

Kuo, Y.M., J.W. Wang, and C.H. Tsai, Encapsulation behaviours of metals in slags containing various amorphous volume fractions. J. Air Waste Manage. Assoc., 2007. 57: p. 820-827.

Wang, Q., et al., Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel, 2009. 88(5): p. 955-958.

Amutha Rani, D., et al., Plasma treatment of air pollution control residues. Waste Manage 2008. 28: p. 1254-1262.

Cheng, T.W., et al., Production of glass-ceramics from incinerator ash using lab-scale and pilot-scale thermal plasma systems. Ceramics International, 2011. 37(7): p. 2437–2444.

Katou, K., et al., Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode. Thin Solid Films, 2001. 386(2): p. 183-188.

Sakai, S. and M. Hiaraoka, Municipal solid waste incinerator residue recycling by thermal processes. Waste Manage, 2000. 20: p. 249–258.

Jimbo, H., Plasma melting and useful application of molten slag. Waste manage, 1996. 16: p. 417-422.

Karoly, Z., et al., Production of glass-ceramics from fly ash using arc plasma. Journal of the European Ceramic Society, 2007. 12(2-3): p. 1721–1725.

Cerqueira, N., et al., Heavy metals volatility during thermal plasma vitrification of mineral waste. Environ. Eng. Sci., 2004. 21: p. 83–92.

Holger, E., et al., State of the art treatment processes for municipal solid waste incineration residues in Japan. Environmental Science & Technology, 2001. 35(7): p. 1531-6

Haugsten, K.E. and B. Gustavson, Environmental properties of vitrified fly ash from hazardous and municipal waste incineration. Waste Manage, 2000(20): p. (2-3).

Frugier, P., et al., OES use and vaporization modeling for fly-ash plasma vitrification. Plasma Chemistry and Plasma Processing, 2000. 20: p. 65-86.

Inaba, T., M. Nagano, and M. Endo, Investigation of plasma treatment for hazardous wastes such as fly ash and asbestos. Electrical Eng. Jpn, 1999. 126: p. 73-82.

Cedzynska, K., et al., Plasma vitrification of waste incinerator ashes,in: International Ash Utilization Symposium. Centre for Applied Energy Research, University of Kentucky, 1999.

Jakob, A., S. Stucki, and S.R.P.W. J, Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates. Environ. Sci. Technol, 1996. 30: p. 3275-3283.

Saikia, N., S. Kato, and T. Kojima, Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manag, 2007. 27: p. 1178-1189.

Ampadu, K.O. and K. Torii, Characterization of ecocement pastes and mortars produced from incinerated ashes. Cem. Concr. Res, 2001. 31: p. 431-436.

Boghetich, G., et al., Chloride extraction for quality improvement of municipal solid waste incinerator ash for the concrete industry. Waste Manag. Res., 2005. 23: p. 57-61.

Ito, R., et al., Removal of insoluble chloride from bottom ash for recycling. Waste Manage, 2008. 28(8): p. 1317-1323.

Choy, K.K.H., et al., Municipal solid waste utilization for integrated cement processing with waste minimization-A pilot scale proposal. Process Saf. Environ. Protect, 2004. 82: p. 200-207.

Fan, Y., F.S. Zhang, and Y. Feng, An effective adsorbent developed from municipal solid waste and coal co-combustion ash for As(V) removal from aqueous solution. J. Hazard. Mater, 2008. 159: p. 313-318.

Kim, H., et al. Production and properties of glass-ceramic from incinerator fly ash. in Materials science forum. 2003. Trans Tech Publ.

Aloisi, M., A. Karamanov, and M. Pelino, Sintered glass–ceramic from municipal solid waste incinerator ashes. Journal of Non-Crystalline Solids, 2004. 345–346: p. 192-196.

Park, Y. and J. Heo, Vitrification of fly ash from municipal solid waste incinerator. Journal of Hazardous Materials, 2002. 91(1–3): p. 83-93.

Vu, D.H., et al., Glass–ceramic from mixtures of bottom ash and fly ash. Waste Management, 2012. 32: p. 2306-2314.

Devaraj, A.R., et al., Glass-ceramic tiles prepared by pressing and sintering DC plasma-vitrified air pollution control residues. Int. J. Of Applied Ceram. Technol., 2010. 7: p. 925-943.

Roether, J.A., D.J. Daniel, and D. Amutha Rani, Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues. Journal of Hazardous Materials, 2010. 173(1-3): p. 563-569.




How to Cite

Abdulkarim, B. I., Abu Hassan, M. A., & Ali, A. M. (2016). Thermal Plasma Treatment of Municipal Solid Waste Incineration Residue: A Review. Asian Journal of Engineering and Technology, 4(5). Retrieved from